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StreamQL: A Query Language for Processing Streaming

Time Series
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Real-time data analysis applications increasingly rely on complex streaming computations over time-series

data. We propose StreamQL, a language that facilitates the high-level specification of complex analyses

over streaming time series. StreamQL is designed as an algebra of stream transformations and provides a

collection of combinators for composing them. It integrates three language-based approaches for data stream

processing: relational queries, dataflow composition, and temporal formalisms. The relational constructs are

useful for specifying simple transformations, aggregations, and the partitioning of data into key-based groups

or windows. The dataflow abstractions enable the modular description of a computation as a pipeline of

stages or, more generally, as a directed graph of independent tasks. Finally, temporal constructs can be used to

specify complex temporal patterns and time-varying computations. These constructs can be composed freely

to describe complex streaming computations. We provide a formal denotational semantics for StreamQL using

a class of monotone functions over streams. We have implemented StreamQL as a lightweight Java library,

which we use to experimentally evaluate our approach. The experiments show that the throughput of our

implementation is competitive compared to state-of-the-art streaming engines such as RxJava and Reactor.
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1 INTRODUCTION

Recent technological advances, such as the Internet of Things (IoT), are causing an enormous
proliferation of streaming data, i.e., data that is generated in real-time and at high rates. Such data
arise in several application domains, including healthcare monitoring, network traffic monitoring,
analysis of financial markets, telecommunications, and smart transportation. There are various
proposals for specialized languages, compilers, and runtime systems that deal with the processing
of streaming data. Relational database systems and SQL-based languages have been adapted to
the streaming setting [Abadi et al. 2003; Abadi et al. 2005; Arasu et al. 2006; Babcock et al. 2002;
Chandrasekaran et al. 2003; Motwani et al. 2003]. Several systems have been developed for the
distributed processing of data streams that are based on the dataflow model of computation
[Kulkarni et al. 2015; Toshniwal et al. 2014; Zaharia et al. 2013]. Languages for detecting complex
events in distributed systems, which draw on the theory of regular expressions and finite-state
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automata, have also been proposed [Brenna et al. 2007; Hirzel 2012; Wu et al. 2006; Zemke et al.
2007]. Synchronous dataflow programming languages [Benveniste et al. 2003; Berry and Gonthier
1992; Caspi et al. 1987; Lee and Messerschmitt 1987] have been used for streaming computations
in the context of embedded systems. Several formalisms for the runtime verification of reactive
systems have been proposed, many of which are based on variants of Temporal Logic and its
timed/quantitative extensions [D’Angelo et al. 2005; Deshmukh et al. 2017; Havelund and Roşu
2004; Leucker and Schallhart 2009; Thati and Roşu 2005]. Finally, there is a rich set of languages
and systems for reactive programming [Courtney 2001; Elliott and Hudak 1997; Maier and Odersky
2012; Meijer 2012], which focus on the development of event-driven and interactive applications.
While the aforementioned approaches have been successful within the application domains

for which they were developed, modern applications require further language support for the
high-level specification of processing over streaming time series. A streaming time series is a data
stream, which consists of a potentially unbounded sequence of data items that arrive in increasing
time order. The processing of such data typically involves computations that integrate simple
transformations, the detection of patterns, and streaming aggregations. For example, consider the
data streams generated by sensors in a real-time health monitoring application (such as heart
rhythm and brain activity monitoring). These signals contain noise from various sources. Moreover,
they are mostly uneventful and interspersed with episodes of unusual activity that need to be
identified and analyzed in a timely manner. So, the monitoring application needs to perform a
complex streaming computation that reduces the noise, identifies abnormal patterns in the signals,
and summarizes the most important information.
One approach for specifying the processing of streaming time series is to use a low-level im-

perative programming language such as C or C++. This approach quickly becomes difficult and
error-prone, as the overall computation cannot be easily expressed in a modular way. The resulting
program contains complex state-manipulating logic and the code is highly entangled (an example
that illustrates this point is discussed in Section 3). For this reason, it is desirable to provide language
support for assisting the programmer in specifying the application in a modular way by composing
simpler computational primitives. However, existing approaches do not provide all the necessary
abstractions for specifying such complex computations in a natural and succinct way. For example,
streaming SQL and related query languages focus on relational abstractions, but provide limited
support for computations that rely on the temporal sequencing of events. The synchronous and
reactive languages offer dataflow abstractions, but are less suitable for the modular specification of
complex temporal patterns. The monitoring formalisms that are based on Temporal Logic have
some quantitative features (e.g., timestamp comparisons and simple value thresholds), but provide
little support for aggregations and signal transformations.
To bridge this gap, we propose a language, called StreamQL (Streaming Query Language),

which simplifies the task of specifying complex streaming computations over time series data. In
contrast to existing proposals whose basic object is the stream (e.g., Observable in Rx [Meijer
2012]), the basic object in StreamQL is the stream transformation that describes how an input
stream is transformed into an output stream. StreamQL provides a novel integration of several
useful programming abstractions for stream processing: (1) relational constructs (such as filtering,
mapping, aggregating, key-based partitioning, and windowing), (2) dataflow constructs (such as
streaming/serial and parallel composition), and (3) temporal constructs that are inspired from
Temporal Logic and regular expressions. StreamQL allows the programmer to specify a streaming
analysis in a modular fashion, since its language constructs compose freely.

Design of StreamQL. In StreamQL, a stream transformation is captured syntactically with a
query. We classify queries according to their input/output type in order to guarantee that composite
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queries (i.e., queries that result from the composition of simpler queries) are well-formed. We
write f : Q(𝐴, 𝐵) to indicate that the query f processes an input stream with items of type 𝐴 and
produces an output stream with items of type 𝐵. A stream is typically viewed as an unbounded
sequence of data items (elements). A key feature of StreamQL is that it generalizes this notion of a
stream by allowing the occurrence of a distinguished symbol ◁, called end-of-stream marker, that
signals the termination of the stream. This is useful not only because there are certain streams
that indeed terminate (e.g., when reading lines from a text file), but more importantly because it
allows us to decompose unbounded streams into finite regions: each finite region can be viewed as
a stream that eventually terminates. Such decompositions of streams are essential for the modular
description of complex streaming computations. A key design feature of StreamQL is that a query
can halt (terminate), even before the input stream has terminated. After a query has halted, then
our language allows the computation to proceed according to some other queries, thus varying the
computation across time. This novel feature of StreamQL enhances modularity by enabling the
unrestricted composition of temporal and dataflow/relational operators.
StreamQL has an expressive set of combinators for describing common stream processing

primitives, as well as rich forms of composition. The primitive queries map, filter, reduce and
aggr describe basic streaming operators for transforming, filtering, and aggregating streams. The
combinator groupBy supports the key-based partitioning of a stream and independent computation
over disjoint sub-streams. The windowing combinators tWindow (tumbling) and sWindow (sliding)
facilitate the specification of computations that operate on finite spans of an unbounded data
stream. The combinators ≫ (streaming/serial composition) and par (parallel composition) allow
the programmer to describe a complex computation as a directed acyclic graph of independent
tasks, which facilitates modular specification and exposes pipeline and task parallelism. The atomic
queries takeUntil, skipUntil and search are used to identify simple single-event patterns
in a stream. They are inspired from the Until connective of Temporal Logic. The combinators
seq (temporal sequencing) and iter (temporal iteration) are useful for describing time-varying
analyses and detecting complex temporal patterns. The constructs seq and iter can be viewed as
stream-transforming analogs of concatenation and Kleene’s star from regular expressions.
The StreamQL language has a formal denotational semantics. A query f : Q(𝐴, 𝐵) represents a

monotone function 𝐴∗ · {𝜀,◁} → 𝐵∗ · {𝜀,◁}, where ∗ is Kleene’s star, 𝜀 is the empty string, and ·

is string concatenation. The monotonicity requirement captures a key requirement of streaming
computation: an output item cannot be retracted after it has been emitted to the output. Every
combinator of StreamQL has a denotational semantic analog, which provides unambiguous meaning
for the entire language and thus validates the language design.

Implementation & Experimental Evaluation. We provide an implementation of StreamQL
as a lightweight Java library. We use an explicit mechanism to reinitialize or reset the streaming
computation, which allows us to reuse the allocated memory when performing operations that
involve stream decomposition. In addition to the core combinators, the implementation provides
support for aggregation (e.g., median and general percentiles), efficient algorithms for sliding
windows, signal-processing primitives such as FFT (Fast Fourier Transform), FIR (Finite Impulse
Response) filters, IIR (Infinite Impulse Response) filters, and several common stream processing
idioms. We have used the library to specify real-word streaming applications on health monitoring.

We compare our StreamQL implementation against three popular open-source streaming engines:
RxJava [RxJava 2020], Reactor [Reactor 2020], and Siddhi [Suhothayan et al. 2011]. The experiments
show that our implementation consistently performs well when compared to these state-of-the-art
streaming engines. In benchmarks with realistic workloads, the throughput of StreamQL is 1.1ś10
times higher than RxJava, 1.2ś20 times higher than Reactor, and 5ś100 times higher than Siddhi.
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Fig. 1. (a) Electrocardiogram or ECG, (b) ECG with annotated signal peaks, (c) Pattern for peak detection.

Main Contributions. The main contribution of our paper is the identification of language
abstractions for processing streaming time series that balance well the following desired properties:
(1) they have clear formal semantics, (2) they give rise to an expressive and compositional language,
and (3) they enable a very lightweight implementation. At the level of language design, the key
choice is to base the language on stream transformations that can potentially halt (instead of
nested streams) and combinators on them. With respect to the implementation, a key idea is the
introduction of an execution model that is essentially a stream transducer that receives a special
control signal for resetting its internal state. We have used this model to provide a compositional
implementation of the language that avoids common sources of computational overheads that are
present in related streaming languages.

Paper Outline. Section 2 introduces the StreamQL language and shows how it can be used
to encode a streaming algorithm for peak detection. Section 3 discusses the expressiveness of
StreamQL. The denotational semantics of StreamQL is presented in Section 4. Section 5 describes
the Java implementation for StreamQL, and Section 6 presents the experimental evaluation of our
implementation. In Section 7, a significant application on ABP (Arterial Blood Pressure) detection
is presented. Section 8 reviews related work, and Section 9 summarizes this paper.

2 OVERVIEW OF STREAMQL

As a motivating example for StreamQL, we will consider the processing of cardiac (heart) signal for
a patient. This signal is called an electrocardiogram (ECG). We will focus on the problem of peak
detection in the ECG, which corresponds to the detection of the heartbeat. This problem is one of
the most widely studied detection problems in the area of biomedical engineering [Bert-Uwe Köhler
2002; Pan and Tompkins 1985], as it forms the basis of many analyses over cardiac data.

Figure 1(a) shows part of an ECG, which is the electrical cardiac signal recorded on the surface
of the skin near the heart. The horizontal axis is time and the vertical axis is voltage. A simple but
effective procedure for detecting the peaks consists of three stages: (1) smoothing the signal to
eliminate high-frequency noise, (2) taking the derivative of the smoothed signal to calculate the
slope, and (3) finding the peaks using both the raw measurements and the derivatives.

smooth deriv detect
𝑥 (𝑛) 𝑦 (𝑛) 𝑧 (𝑛)

Figure 1(b) shows a short snippet (about 3 seconds) of an ECG signal, where the gray line corresponds
to the input time series 𝑥 (𝑛), the green line is the smoothed data 𝑦 (𝑛) = (𝑥 (𝑛 − 2) + 2𝑥 (𝑛 − 1) +

4𝑥 (𝑛) + 2𝑥 (𝑛 + 1) + 𝑥 (𝑛 + 2))/10, and the blue line is the derivative 𝑧 (𝑛) = 𝑦 (𝑛) − 𝑦 (𝑛 − 1). A
straightforward algorithm for detecting the peaks is to find the first occurrence (let us say at time
𝑖) where the derivative 𝑧 (𝑛) exceeds a pre-defined threshold hTh, followed by the first occurrence
after 𝑖 (let us say at time 𝑗 ) where the derivative 𝑧 (𝑛) becomes less than a threshold lTh. Time point
𝑖 is located on the ascending slope towards the peak, and time point 𝑗 is located on the descending
slope after the peak. So, the exact peak location can be found by searching for the maximum value
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of the original 𝑥 (𝑛) time series in the interval from 𝑖 to 𝑗 . This pattern is illustrated in Figure 1(c).
Every time a peak is identified, this detection procedure is reset and repeated.

Thismotivating example shows that the detection of complex patterns requires the transformation
of the data stream (e.g., smoothing and differentiation) to enrich it with extra information. For this
reason, the basic concept in the design of StreamQL is the stream transformation, which specifies
how an input stream is transformed into an output stream. A query is a syntactic description of a
stream transformation. Every query f has a type Q(𝐴, 𝐵), where 𝐴 is the type of input data items,
and 𝐵 is the type of the output data items. We write f : Q(𝐴, 𝐵) to indicate that f is of type Q(𝐴, 𝐵).
A stream is typically viewed as an unbounded sequence of data items. We consider here a

generalization of this notion of streams by assuming that the stream can potentially contain an
occurrence of a special ◁ symbol, called end-of-stream marker. We say that a stream is terminated

if it ends with ◁. As we will see later, the introduction of the end-of-stream marker allows us to
define stream transformations that operate only on finite parts of the stream, which is useful for
the modular specification of complex streaming computations such as time-varying analyses.
We will proceed to present the basic programming constructs of the StreamQL language. We

will start with some simple primitives, and we will gradually build up towards the more complex
combinators (i.e., composition constructs) of the language. Finally, we will conclude this section
with a complete description of the ECG peak detection algorithm.

Table 1. Map, Filter, Aggregate, Reduce.

input: ⟨2.5, 1⟩ ⟨0.8, 2⟩ ⟨3.5, 3⟩ ⟨0.9, 4⟩ ◁
f output: 5.0 1.6 7.0 1.8 ◁

g output: ⟨2.5, 1⟩ ⟨3.5, 3⟩ ◁

h output: 2.5 3.3 6.8 7.7 ◁

k output: 7.7 ◁

Map, Filter, Aggregate, and Reduce. Suppose
that the input stream is a real-valued discrete-time
signal. The type of the input data items is a record
type VT = {val : V, ts : T}, where V is the type
of scalar values (e.g., real numbers) and T is the
type of time points (e.g., natural numbers). The
map query f = map(x -> 2 · x.val) has type Q(VT, V) and represents the transformation that
outputs the double of the value of each item. The argument x -> 2 · x.val is a lambda expression
that defines a function of type VT → V. The filter query g = filter(x -> x.val ≥ 2.0), of type
Q(VT, VT), filters out those items with a value less than 2.0 and keeps the rest. The lambda expression
x -> x.val ≥ 2.0 is a predicate on VT. The aggregation query h = aggr(0.0, (x, y) -> x + y.val) :

Q(VT, V) represents the running sum of the values in the input stream. The first argument 0.0 : V is
the initial aggregate value, and the second argument is a binary function of type V×VT → V that spec-
ifies how to aggregate each input data item. The reduce query k = reduce(0.0, (x, y) -> x + y.val),
of type Q(VT, V), is similar to the running aggregation query h, with the difference that it only emits
the total aggregate when the input stream terminates. Table 1 shows the execution of the queries f,
g, h, k, where time progresses in the left-to-right direction. For a function op : 𝐴 ×𝐴 → 𝐴, we also
consider the variants aggr(op), reduce(op) : Q(𝐴,𝐴), which do not need an initial aggregate (the
first item of the input serves this purpose). The most general variants take a function init : 𝐴 → 𝐵

for initialization (using the first item of the input) and an aggregation function op : 𝐵 ×𝐴 → 𝐵.

Table 2. Key-based partitioning.

input: ⟨𝑎, 3⟩ ⟨𝑏, 5⟩ ⟨𝑎, 1⟩ ⟨𝑐, 2⟩ ⟨𝑐, 1⟩ ⟨𝑎, 4⟩ ◁
group 𝑎: ⟨𝑎, 3⟩ ⟨𝑎, 1⟩ ⟨𝑎, 4⟩ ◁
group 𝑏: ⟨𝑏, 5⟩ ◁

group 𝑐 : ⟨𝑐, 2⟩ ⟨𝑐, 1⟩ ◁

g output: 3 5 4 2 3 8 ◁

Key-based Partitioning. Let us consider an in-
put streamwith items of type IV = {id : ID, val :

V}, where ID is a type of identifiers. Suppose that
we have written a query f : Q(IV, 𝐵) that com-
putes an aggregate of items with a fixed identi-
fier, i.e. under the assumption that all the items
of the input stream have the same identifier. Then, to compute this aggregate across all identi-
fiers, the most natural way is to partition the input stream by a key, the identifier field id in
this case, and supply the corresponding projected sub-stream to a copy of f. This construct is

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 183. Publication date: November 2020.



183:6 Lingkun Kong and Konstantinos Mamouras

called key-based partitioning and it is described by the query g = groupBy(x -> x.id, f) : Q(IV, 𝐵).
The first argument x -> x.id is a function of type IV → ID that specifies the partitioning key,
and f describes the computation that will be independently performed on each sub-stream. If
we choose f = aggr(0, (x, y) -> x + y.val) : Q(IV, V) to be a running sum, then the query
g = groupBy(x -> x.id, f) : Q(IV, V) performs the computation shown in Table 2.

Table 3. Tumbling and sliding windows.

input: 1 2 3 4 5 6 7 8 ◁

tWindow(2, f) output: 3 7 11 15 ◁

tWindow(3, f) output: 6 15 ◁

sWindow(2, 1, f) output: 3 5 7 9 11 13 15 ◁

sWindow(3, 1, f) output: 6 9 12 15 18 21 ◁

sWindow(3, 2, f) output: 6 12 18 ◁

Tumbling & SlidingWindows. The so-called
windowing constructs are used to partition an un-
bounded stream into finite fragments called win-
dows and perform computations on each one of
them independently. The tumbling window com-
binator splits the stream into contiguous non-
overlapping regions. For a query f : Q(𝐴, 𝐵) and a
natural number 𝑛 ≥ 1, the query tWindow(𝑛, f) applies f to tumbling windows of size 𝑛. The sliding
window combinator splits the stream into overlapping regions. For a query f : Q(𝐴, 𝐵) and natural
numbers 𝑛, 𝑠 with 1 ≤ 𝑠 < 𝑛, the query sWindow(𝑛, 𝑠, f) applies f to windows of size 𝑛 with a new
window starting every 𝑠 items. Let us consider now the query f = reduce(0, (x, y)->x+y) : Q(V, V),
which calculates the total sum of a terminated stream. Table 3 illustrates tWindow and sWindow.
We also provide variants of the windowing constructs that allow the programmer to specify a
function op : 𝐴𝑛 → 𝐵 to summarize the contents of a window of size 𝑛, as in tWindow(𝑛, op) and
sWindow(𝑛, 𝑠, op). For example, the query sWindow(3, 1, (x, y, z) -> (x + y + z)/3) computes the
sliding (moving) average over windows of size 3.

Table 4. Streaming (serial) composition.

input: ⟨2.5, 1⟩ ⟨0.8, 2⟩ ⟨3.5, 3⟩ ⟨0.9, 4⟩ ◁
f output: 2.5 0.8 3.5 0.9 ◁

f ≫ g output: 2.5 2.5 3.5 3.5 ◁

Streaming/Serial Composition. Anatural con-
struct for streaming computation is to compose
queries f : Q(𝐴, 𝐵) and g : Q(𝐵,𝐶) so that the
output items produced by f are supplied as input
to g. This is denoted by pipeline(f, g) : Q(𝐴,𝐶),
which we abbreviate as f ≫ g. We call this query the streaming or serial composition of f and
g. This construct generalizes to more than two arguments. It is useful for setting up a complex
computation as a pipeline of stages. Consider the queries f = map(x -> x.val) : Q(VT, V) and
g = aggr(max) : Q(V, V). The query f≫ g : Q(VT, V) computes the running maximum (see Table 4).

Table 5. Parallel composition

input: 10 20 30 40 50 ◁

f output: 10 30 60 100 150 ◁

g output: 1 2 3 4 5 ◁

par(f, g) output: 10 1 30 2 60 3 100 4 150 5 ◁

h output: 10 15 20 25 30 ◁

Parallel Composition. We introduce a con-
struct for executing multiple queries in paral-
lel on the same input stream and combining
their results. For queries f and g of type Q(𝐴, 𝐵),
the query par(f, g) : Q(𝐴, 𝐵) describes the fol-
lowing computation: The input stream is dupli-
cated with one copy sent to f and one copy sent to g. The queries f and g compute in parallel,
and their outputs are merged (specifically, interleaved) to produce the final output. Using the
running sum query f = aggr(+) and the running count query g = aggr(0, (x, y) -> x + 1), both of
type Q(V, V), the query h = par(f, g) ≫ tWindow(2, (x, y) -> x/y) : Q(V, V) computes the running
average (see Table 5). The par construct generalizes to several arguments.

Temporal Constructs. As mentioned before, the end-of-stream marker ◁ indicates the end of a
stream. When a query emits ◁ to the output we say that it halts, because it cannot produce any more
output. All the query examples that we have seen so far have the property that they halt exactly
when they encounter ◁ in the input stream. By lifting this restriction we can support queries that
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can halt early. This is useful (1) for varying a streaming computation as time progresses and (2) for
detecting complex temporal patterns.

Table 6. Take, skip, ignore, search.

input: 1 2 3 4 5 ◁

takeUntil(x -> x ≥ 4) output: 1 2 3 4 ◁

take(3) output: 1 2 3 ◁

skipUntil(x -> x ≥ 4) output: 4 5 ◁

skip(2) output: 3 4 5 ◁

ignore() output: ◁

ignore(3) output: ◁

search(x -> x ≥ 2) output: 2 ◁

The query takeUntil(p) : Q(𝐴,𝐴), where p

is a predicate over 𝐴, computes like the identity
transformation while there is no occurrence of an
item satisfying p in the input. When it encounters
the first item satisfying p, it emits it to the output
and halts. A similar query is take(𝑛) : Q(𝐴,𝐴),
where 𝑛 ≥ 1 is an integer, which echoes the first
𝑛 items of the input stream to the output and then
halts. The query skipUntil(p) : Q(𝐴,𝐴), for a predicate p on 𝐴, emits no output while the input
contains no item satisfying p. When the first item satisfying p is seen, it emits it to the output
and continues to compute like the identity transformation. The query skip(𝑛) : Q(𝐴,𝐴), for an
integer 𝑛 ≥ 1, emits no output for the first 𝑛 input items, and then proceeds to echo the rest of
the input stream. The query ignore() : Q(𝐴,𝐴) emits empty output for all input items and halts
for the end-of-stream marker. The query ignore(𝑛) : Q(𝐴,𝐴), for an integer 𝑛 ≥ 1, emits no
output for the first 𝑛 input items and then immediately halts. For a predicate p on 𝐴, the query
search(p) : Q(𝐴,𝐴) emits no output while it searches for the first occurrence of an item satisfying
p. When it encounters such an item, it emits it to the output and halts. See Table 6.

Table 7. Temporal sequencing.

input: 1 2 3 4 3 2 1 ◁

f output: 3 ◁

seq(f, g) output: 3 4 3 2 ◁

The temporal sequencing combinator can apply
different queries in sequence (i.e., one after the other),
thus varying the computation over time. For queries
f and g of type Q(𝐴, 𝐵), their temporal sequencing
seq(f, g) : Q(𝐴, 𝐵) computes like f until it halts,
and then it proceeds to compute like g. For example, if f = search(x -> x ≥ 3) and g =

takeUntil(x -> x ≤ 2), then seq(f, g) computes as shown in Table 7.

Table 8. Temporal iteration.

input: 2 3 0 9 0 1 7 0 3

f output: 2 3 0 ◁

f ≫ g output: 5 ◁

iter(f ≫ g) output: 5 9 8

The temporal iteration combinator can be
used to repeat a streaming computation indef-
initely. For a query f : Q(𝐴, 𝐵), its temporal
iteration iter(f) : Q(𝐴, 𝐵) executes f and
restarts it every time it halts. This results in
an unbounded temporal repetition of the com-
putation that f specifies. Now, the iteration of f ≫ g, where f = takeUntil(x -> x = 0) and
g = reduce(0, +), computes as shown in Table 8.

Table 9. Flatten and Emit.

input: [𝑎1, 𝑎2] [] [𝑎3] [] ◁
flatten output: 𝑎1 𝑎2 𝑎3 ◁

input: 𝑎1 𝑎2 ...
emit( [𝑏1, 𝑏2 ]) output: 𝑏1 𝑏2 ◁

FlattenandEmit. The query flatten : Q(List(𝐴), 𝐴)

processes an input stream whose data items are lists that
contain elements of type 𝐴, and it propagates list ele-
ment to the output. For a list out : List(𝐵), the query
emit(out) : Q(𝐴, 𝐵), specifies the computation that out-
puts the elements of out at the very beginning (before
any input items are consumed) and then immediately halts. See Table 9 for examples.

Join. StreamQL provides the constructs zip, zipLast, and join to combine input data from
several input sub-streams. Let us consider an input stream with data items from two different
sources, in which one is the signal measurement (of type V), and the other is the signal identifier
(of type ID). The input type is Or(V, ID), which means that an input item is either of type V or
of type ID. Then, to annotate the signal measurements with corresponding identifiers as outputs
of type IV = {id : ID, val : V}, a natural way is to combine the values and the identifiers based
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Relational Constructs

op : 𝐴→ 𝐵

map(op) : Q(𝐴, 𝐵)

p : 𝐴→ Bool

filter(p) : Q(𝐴,𝐴)

init : 𝐵 op : 𝐵 ×𝐴→ 𝐵

reduce(init, op) : Q(𝐴, 𝐵)

init : 𝐵 op : 𝐵 ×𝐴→ 𝐵

aggr(init, op) : Q(𝐴, 𝐵)

k : 𝐴→ 𝐾 f : Q(𝐴, 𝐵)

groupBy(k, f) : Q(𝐴, 𝐵)

n ≥ 1 f : Q(𝐴, 𝐵)

tWindow(n, f) : Q(𝐴, 𝐵)

1 ≤ s < n f : Q(𝐴, 𝐵)

sWindow(n, s, f) : Q(𝐴, 𝐵)

op : 𝐴 × 𝐵 → 𝐶

zip(op), zipLast(op) : Q(Or(𝐴, 𝐵),𝐶)

op : 𝐴 × 𝐵 → 𝐶

join(op) : Q(Timed(Or(𝐴, 𝐵)), Timed(𝐶))

Dataflow Constructs

f : Q(𝐴, 𝐵) g : Q(𝐵,𝐶)

f ≫ g : Q(𝐴,𝐶)

f : Q(𝐴, 𝐵) g : Q(𝐴, 𝐵)

par(f, g) : Q(𝐴, 𝐵)

Temporal Constructs

n ≥ 1

take(n), skip(n), ignore(n) : Q(𝐴,𝐴)

p : 𝐴→ Bool

takeUntil(p), skipUntil(p), search(p) : Q(𝐴,𝐴)

f, g : Q(𝐴, 𝐵)

seq(f, g) : Q(𝐴, 𝐵)

f : Q(𝐴, 𝐵)

iter(f) : Q(𝐴, 𝐵)

Flatten, Emit, and User-defined transformations

𝐴 : Type

flatten(𝐴) : Q(List(𝐴), 𝐴)

𝐴 : Type out : List(𝐵)

emit(𝐴, out) : Q(𝐴, 𝐵)

init : 𝑆 next : 𝑆 ×𝐴→ 𝑆 out : 𝑆 → List(𝐵) end : 𝑆 → List(𝐵)

userDefined(init, next, out, end) : Q(𝐴, 𝐵)

Fig. 2. The Streaming Query Language (StreamQL).

on their order of arrival. StreamQL provides the constructs zip and zipLast. Given a function
op = (val, id) -> ⟨val, id⟩ : V × ID → IV that annotates a signal measurement with an identifier,
the query f = zip(op) : Q(Or(V, ID), IV) combines the measurements and the identifiers one
by one with respect to their order of arrival, and the query g = zipLast(op) : Q(Or(V, ID), IV)

combines the last arrived data items from different categories (See Table 10).

Table 10. Zip and ZipLast.

input: 1.2 𝑎 𝑏 −3.3 𝑐 2.5 ◁

val: 1.2 −3.3 2.5
id: 𝑎 𝑏 𝑐

f output: ⟨1.2, 𝑎⟩ ⟨−3.3, 𝑏 ⟩ ⟨2.5, 𝑐 ⟩ ◁
g output: ⟨1.2, 𝑎⟩ ⟨1.2, 𝑏 ⟩ ⟨−3.3, 𝑏 ⟩ ⟨−3.3, 𝑐 ⟩ ⟨2.5, 𝑐 ⟩ ◁

Moreover, StreamQL allows users to assign
a validity interval to the data item, and it
provides the join construct to combine data
items that have overlapping validity intervals.
To assign validity intervals, users need to pro-
vide the start/end time of the interval for each
input ś the input type is specified as Timed(𝐷) = {data : 𝐷, startT : 𝑇, endT : 𝑇 }, where
𝐷 denotes the type of the data, and 𝑇 is the type of the time unit (e.g., long integers). Suppose
𝐷 = Or(𝐴, 𝐵) (i.e., the input data is either of type𝐴 or type𝐵), given a binary function op : 𝐴×𝐵 → 𝐶

that combines data, the join(op) : Q(Timed(Or(𝐴, 𝐵)), Timed(𝐶)) query joins data items with
overlapping validity intervals. The output item, of type Timed(𝐶), is also labeled by a validity
interval which is the intersection of the validity intervals of the input data.

User-defined StreamTransformations. The construct userDefined is used to specify a stream
transformation with a transducer (state machine). The query userDefined(init, next, out, end) :
Q(𝐴, 𝐵) takes four arguments to describe the computation: init (of type 𝑆) is the initial state of
the transducer, next : 𝑆 ×𝐴 → 𝑆 is the state transition function, out : 𝑆 → List(𝐵) is the output
function, and end : 𝑆 → List(𝐵) gives the final output (upon termination of the input with ◁).
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Streaming Peak Detection. Figure 2 summarizes several constructs of StreamQL. In the begin-
ning of this section, we gave a high-level description of a simple streaming algorithm for detecting
the peaks in the ECG signal. We will now use StreamQL to provide a complete description of
this algorithm, which is a variant of [Moody 2018]. In Section 7, we will present a significant
example for processing the Arterial Blood Pressure signal. Suppose that the data stream con-
cerns multiple patients, that is, it is the interleaving of several ECG time series, one for each
patient. The type of the input data items is a record type IVT = {id : ID, val : V, ts : T},
where ID is the type of patient identifiers, V is the type of scalar values, and T is the type of
time points. At the top level, the algorithm works by partitioning the input stream into several
sub-streams, one for each patient, and performing peak detection for each one of these sub-
streams independently. The query groupBy(x -> x.id, findPeak) describes this computation,
where findPeak specifies the peak detection algorithm for a single-patient ECG data stream. This
is defined as findPeak = smooth≫ deriv≫ detect, which is the composition of three stages:
(1) smoothing the signal, (2) computing derivatives, and (3) detecting peaks. The smoothing query
smooth : Q(IVT, IVTF) has output type IVTF, which is the record type IVT extended with the
component fval : V for storing the smoothed (low-pass filtered) value.

smooth = sWindow(5, 1, (v, w, x, y, z) -> expr), where

expr = ⟨x.id, x.val, x.ts, fval⟩ : IVTF and

fval = (v.val + 2 · w.val + 4 · x.val + 2 · y.val + z.val)/10.

The idea is that for a sample x at time x.ts we consider the window (v, w, x, y, z) centered around
x and calculate a weighted average over the window for the smoothed value. The differentiation
query deriv : Q(IVTF, IVTFD) calculates discrete derivatives by taking the difference of successive
smoothed values. It is implemented as follows:

deriv = sWindow(2, 1, (x, y) -> expr), where

expr = ⟨y.id, y.val, y.ts, y.fval, dval⟩ : IVTFD and dval = y.fval − x.fval : V.

The record type IVTFD extends IVTF with dval : V for storing the derivative. The detection of the
first peak involves searching for the first time point ℓ1 when dval exceeds the threshold hTh. The
signal interval from this point until the time point 𝑟1 when dval falls below the threshold lTh

contains the first peak. Thus, the signal in the interval [ℓ1, 𝑟1] is streamed to the argmax query
(see below), which finds the data item with the highest value (in the raw, unfiltered signal). This
process is repeated indefinitely in order to detect all peaks:

start = search(x -> x.dval > hTh)

take = takeUntil(x -> x.dval < lTh)

argmax = reduce((x, y) -> (y.val > x.val) ? y : x)

detect = iter(seq(start, take) ≫ argmax)

All four queries above are of type Q(IVTFD, IVTFD).

3 DISCUSSION OF EXPRESSIVENESS

A natural approach for processing a data stream is to write a program in a low-level imperative
programming language such as C. However, this process is tedious and error-prone because
the computation cannot be easily expressed in a modular way. The program that specifies the
computation typically contains complex state-manipulating logic and the code is heavily entangled.
For this reason, several domain-specific languages have been proposed which offer various primitive
streaming constructs (e.g., pipelines and sliding windows) in order to assist the programmer in
expressing the desired computation. In this section, we will illustrate some of the features of
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double coef[5] = {0.1, 0.2, 0.4, 0.2, 0.1};

V t[5]; // circular array

int cnt = 0, start = 0;

bool isFReady = false;

void next(V v){

// smooth the input

if (cnt < 5) {

t[cnt++] = v;

} else {

t[start] = v;

start = (start + 1) % 5;

}

F f = 0.0;

if (cnt == 5) {

// compute the result when t is full

for (int i = 0; i < 5; i++) {

f += coef[i] * t[(start + i) % 5];

}

}

if (isFReady) {

// compute the derivative

D d = f - lastF;

lastF = f;

out(d); // produce output

} else if (cnt == 5) {

lastF = f;

isFReady = true;

} // else do nothing

}

double coef[] = {0.1, 0.2, 0.4, 0.2, 0.1};

class FCnt{

F f; // FIR filtering result

int cnt;

FvalCnt(F f, int cnt){

this.f = f;

this.cnt = cnt;

}

}

Observable<D> outputStream = inputStream

.window(5, 1) // smooth the input

.flatMap(wnd -> wnd.reduce(

new FCnt(0.0, 0),

(pair, v) -> {

F f = pair.f;

int cnt = pair.cnt;

f += v * coef[cnt];

cnt ++;

return new FCnt(f, cnt);

}).map(p -> p.f).toObservable()

).window(2, 1) // compute the derivative

.flatMap(wnd -> wnd.reduce(

new ArrayList<>(),

(l, f) -> { // add f into list l

return List.copyOf(l.add(f));

}).map(l -> l.size() == 2 ?

l.get(1) - l.get(0) : null)

.filter(d -> d != null).toObservable()

);

Q<V,F> smooth = sWindow(5, 1, (a, b, c, d, e) -> (a + 2*y + 4*c + 2*d + e) / 10.0);

Q<F,D> deriv = sWindow(2, 1, (a, b) -> b - a);

Q<V,D> query = pipeline(smooth, deriv);

Fig. 3. Program for input preprocessing written in C (top-left), RxJava (top-right), and StreamQL (bottom).

StreamQL that facilitate the modular description of streaming computations, particularly for time-
series workloads. We will compare StreamQL to both low-level imperative languages (such as C)
and domain-specific languages (such as Rx) in the context of a concrete example.

Assume that the input stream consists of signal measurements of type V (integer type) which are
collected at a fixed frequency.Wewill consider a computation that is the composition of a smoothing
filter and calculating the derivative. We use a low-pass filter to smooth the input into results f : F

(floating point type), where f = (v1 + 2v2 + 4v3 + 2v4 +v5)/10 for each five consecutive input items
v1, v2, ..., v5. Then, we compute the derivative d : D (floating point type) where d = f2−f1 for every
two consecutive smoothed values. The top-left part of Figure 3 shows the algorithm implemented
in C. It processes the input stream item by item by calling the next function and produces output
items by calling the out function. We use the circular array t to buffer the input for smoothing. We
update the array by replacing its oldest element by the incoming input item, and then we apply the
coefficients of the low-pass filter (stored in the coef array) to the buffered elements to compute
the smoothing results. After that, the program computes the derivatives and produces the output.
The top-right part of Figure 3 shows the RxJava implementation. RxJava does not provide a sliding
window construct that uses circular arrays. To integrate this efficient data structure, a user of the
library would need to create a customized operator from scratch. The bottom part of Figure 3 shows
the implementation in StreamQL, where the sWindow construct allows users to directly aggregate
all elements inside the window with efficient built-in data structures.

Now, let us consider an algorithm for detect peaks in a stream of numerical values (suppose they
are of type V). The algorithm searches for the first value that exceeds the threshold THRESH. Then,
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V peak = -INFINITY;

enum mode { beforePeak, inPeak, afterPeak };

int cnt;

enum mode m = beforePeak;

void next(V v){

if (m == beforePeak) {

if (v > THRESH) {

m = inPeak;

cnt = PEAK_CNT;

} // else do nothing

} else if (m == inPeak) {

peak = (v > peak) ? v : peak;

cnt --;

if (cnt == 0) {

out(peak); // produce outputs

m = afterPeak;

cnt = SILENCE_CNT;

}

} else { // m == afterPeak

cnt --;

if (cnt == 0) {

m = beforePeak;

peak = -INFINITY;

}

}

}

Q<V,V> start = search(v -> v > THRESH);

Q<V,V> take = take(PEAK_CNT);

Q<V,V> max = reduce((x, y) -> (y > x) ? y : x);

Q<V,V> find1 = pipeline(seq(start, take), max);

Q<V,V> silence = ignore(SILENCE_CNT);

Q<V,V> query = iterate(seq(find1, silence));

enum Mode { beforePeak, inPeak, afterPeak }

class State{

Mode mode; int cnt;

boolean sendOut; V peak;

State(Mode m, int c, boolean s, V p) {

mode = m; cnt = c;

sentOut = s; peak = p;

}

}

Observable<V> outputStream = derivStream.scan(

new State(beforePeak, 0, false, -INFINITY),

(s, v) -> {

Mode m = s.mode;

int cnt = s.cnt;

boolean sendOut = false;

V peak = s.peak;

if (m == beforePeak) {

if (v > THRESH) {

m = inPeak;

cnt = PEAK_CNT;

} // else do nothing

} else if (m == inPeak) {

peak = (v > peak) ? v : peak;

if (-- cnt == 0) {

sendOut = true;

m = afterPeak;

cnt = SILENCE_CNT;

}

} else { // m == afterPeak

if (-- cnt == 0) {

m = beforePeak;

peak = -INFINITY;

}

}

return new State(m, cnt, sendOut, peak);

}).filter(s -> s.sendOut).map(s -> s.peak);

Fig. 4. Program for peak detection written in C (top-left), RxJava (right), and StreamQL (bottom-left).

it search for the maximum over the next #PEAK_CNT elements, which is considered a peak. After
that, the algorithm silences detection for #SILENCE_CNT elements to avoid a duplicate detection.
This process is repeated indefinitely in order to detect all peaks. The top-left part of Figure 4 shows
the C implementation of the algorithm, where the input stream is repeatedly partitioned into three
regions: beforePeak, inPeak, and afterPeak. This partitioning is data-dependent as the end
of beforePeak happens when the value exceeds the threshold. The right part of Figure 4 is the
RxJava implementation. Rx provides count/time-based tumbling windows to split up the stream
into non-overlapping regions. However, such a decomposition is not data-dependent, as it does not
rely on the input values. Moreoever, Rx has no operator like StreamQL’s iter for repeating the
execution of a query (i.e., detection of a single peak) every time it halts. Given the absence of these
features, the most convenient way to program the algorithm in RxJava is to use its scan operator
(similar to aggr in StreamQL). This amounts to providing a monolithic imperative implementation
of the whole algorithm. The bottom-left part of Figure 4 shows the implementation of the algorithm
in StreamQL.

Semantically, Rx and StreamQL can be understood as algebras with combinators. There is a key
difference. Rx is an algebra of streams, where the basic objects are streams and the combinators are
operations on streams. StreamQL, on the other hand, is an algebra of stream transformations, where
its basic objects are stream transformations and the combinators are operations on transformations.
More specifically, Observable is the basic object in Rx that represents a stream. Rx describes the
overall computation as a sequence of transformations to the source Observable. The first-class
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StreamQL Rx Siddhi Trill
1. stream filtering yes yes yes yes
2. stream mapping yes yes yes yes
3. sequential aggregation yes yes ∗ yes
4. key-based partitioning yes yes yes yes
5. tumbling window yes yes yes yes
6. sliding window yes yes yes yes
7. efficient window aggregation yes no yes yes
8. streaming pipeline yes yes yes yes
9. relational join yes yes yes yes
10. temporal sequencing yes no no no
11. temporal iteration yes no no no
12. signal processing primitives yes no no yes
13. regular parsing ∗ no yes yes
14. user-defined functions yes yes yes yes

Fig. 5. Some of the features and streaming constructs supported by StreamQL, Rx, Siddhi and Trill.

object in StreamQL is the stream transformation, which is captured syntactically with a query.
StreamQL describes the computation as the composition of sub-computations defined by queries.
For example, iter(f) is the temporal iteration of a query f. So, if Rx is considered first-order then
StreamQL is second-order. This explains why iter and seq are easily integrated in StreamQL but
are more difficult to express in Rx.

Figure 5 lists some useful constructs for stream processing and the engines that support them. The
streaming operations marked with ∗ in Figure 5 indicate that the library supports such operations,
but their use requires additional encoding. For example, for sequential aggregation, Siddhi does
not have a construct like StreamQL’s aggr. Instead, it defines a set of fixed aggregations (e.g., sum
and average). Other sequential aggregations can be implemented using user-defined functions. Rx
does not implement efficient algorithms for window aggregation, which is discussed in detail in
Section 6. The temporal sequencing and the temporal iteration constructs (seq and iter in StreamQL)
decompose the stream into sub-streams, and the decomposition is data-dependent. It is not easy
to express such computations in Rx, Siddhi and Trill in a modular way. Both StreamQL and Trill
provide signal processing constructs (e.g., FFT, FIR and IIR filtering) to transform and analyze signals.
Regular parsing can be encoded in StreamQL since the constructs seq and iter are essentially
stream-transforming analogs of concatenation and Kleene’s star from regular expressions. Siddhi
and Trill support regular parsing by providing extensions for complex event processing (CEP).

4 SEMANTICS

In this section, we present the denotational semantics of StreamQL using a class of monotone
functions. This semantics clarifies the meaning of the language primitives and combinators. The
use of monotone functions or other sequence transductions for describing streaming computations
has been considered in [Alur et al. 2018; Chattopadhyay and Mamouras 2020; Mamouras et al. 2019;
Mamouras and Wang 2020] and in a much more general algebraic setting in [Mamouras 2020].
For a type 𝐴, we write 𝐴∗ to denote the set of finite sequences over 𝐴. We write 𝑢 · 𝑣 or 𝑢𝑣

to denote the concatenation of the sequences 𝑢 and 𝑣 , and 𝜀 for the empty word. Our language
allows streams that can terminate. The special symbol ◁ indicates the end of a stream. We call
◁ the end-of-stream marker. Define 𝐴†

= 𝐴∗ · {𝜀,◁} = 𝐴∗ ∪ (𝐴∗ · ◁), i.e., 𝐴† contains the finite
sequences over𝐴 that could potentially end with an end-of-stream marker. For sequences 𝑥,𝑦 ∈ 𝐴†,
we write 𝑥 ≤ 𝑦 if 𝑥 is a prefix of 𝑦, i.e. 𝑥𝑧 = 𝑦 for some 𝑧 ∈ 𝐴†. We say that ≤ is the prefix relation
on sequences. When 𝑥 ≤ 𝑦, there is a unique 𝑧 with 𝑥𝑧 = 𝑦, which we denote by 𝑥−1𝑦. We write
𝑥 < 𝑦 when 𝑥 ≤ 𝑦 and 𝑥 ≠ 𝑦. A sequence 𝑥 ∈ 𝐴† is said to be terminated if it ends with ◁.
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The input/output behavior of a streaming computation can be described semantically by a
function of type 𝐴† → 𝐵†, where 𝐴 is the type of the input items and 𝐵 is the type of the output
items. If 𝑥 ∈ 𝐴† is the prefix of the input stream seen so far, then 𝑓 (𝑥) ∈ 𝐵† is the cumulative output
that has been emitted after the whole sequence 𝑥 is processed. As more input data items arrive,
the output stream gets extended with more output items. This is captured formally by requiring
that the function 𝑓 is monotone: 𝑥 ≤ 𝑦 implies that 𝑓 (𝑥) ≤ 𝑓 (𝑦) for every 𝑥,𝑦 ∈ 𝐴†. A monotone
function 𝑓 : 𝐴† → 𝐵† is said to be a stream transformation. We write ST(𝐴, 𝐵) to denote the set
of all stream transformations with input (resp., output) data items of type 𝐴 (resp., 𝐵).

As mentioned earlier, a stream transformation 𝑓 : ST(𝐴, 𝐵) specifies the cumulative output of a
streaming computation, i.e. the total output that has been emitted from the beginning until the
entire input prefix is consumed. The computation can be described equivalently by specifying the
incremental output, i.e. the output increment that is emitted exactly when the last item of an input
prefix is consumed. The incremental output of 𝑓 for the input history 𝑥𝑎 is equal to 𝑓 (𝑥)−1 𝑓 (𝑥𝑎).

input item input history incremental output cumulative output
𝜀 0 0

1 1 1 0 1

2 1 2 3 0 1 3

3 1 2 3 6 0 1 3 6

◁ 1 2 3 ◁ ◁ 0 1 3 6 ◁

The table above illustrates these concepts with the example of calculating the running sum over
a stream of integers. Suppose 𝑓 : ST(𝐴, 𝐵) describes the input/output behavior of a streaming
computation in a cumulative fashion, and 𝜑 : 𝐴† → 𝐵† describes the same computation in an
incremental fashion. Then, 𝑓 and 𝜑 are related in the following way:

𝑓 (𝑎1𝑎2 . . . 𝑎𝑛) = 𝜑 (𝜀) · 𝜑 (𝑎1) · 𝜑 (𝑎1𝑎2) · · ·𝜑 (𝑎1𝑎2 . . . 𝑎𝑛)

𝑓 (𝑎1𝑎2 . . . 𝑎𝑛◁) = 𝑓 (𝑎1𝑎2 . . . 𝑎𝑛) · 𝜑 (𝑎1𝑎2 . . . 𝑎𝑛◁)

for all 𝑎1𝑎2 . . . 𝑎𝑛 ∈ 𝐴∗. Equivalently, we have that

𝜑 (𝜀) = 𝑓 (𝜀) 𝜑 (𝑢𝑎) = 𝑓 (𝑢)−1 𝑓 (𝑢𝑎) 𝜑 (𝑢◁) = 𝑓 (𝑢)−1 𝑓 (𝑢◁)

for all 𝑢 ∈ 𝐴∗ and 𝑎 ∈ 𝐴. Function 𝜑 satisfies the following property: if 𝜑 (𝑥) ends with ◁, then
𝜑 (𝑦) = 𝜀 for all 𝑦 ≥ 𝑥 . This says that when the output stream terminates, no more output data
items can be emitted. We write 𝜕𝑓 : 𝐴† → 𝐵† to denote the incremental version of 𝑓 : ST(𝐴, 𝐵).

Figure 6 gives the denotational semantics for some core combinators of StreamQL. The definition
of the stream transformations map(op) and filter(p) are straightforward. The transformations
reduce(𝑏, op) and aggr(𝑏, op) are both aggregations, but differ in when they give output. Informally,
reduce(𝑏, op) gives the total aggregate when the stream terminates, whereas aggr(𝑏, op) gives the
running aggregate every time a new item arrives. Their definition requires the fold combinator

fold : 𝐵×(𝐵×𝐴 → 𝐵)×𝐴∗ → 𝐵, given by fold(𝑏, op, 𝜀) = 𝑏 and fold(𝑏, op, 𝑢𝑎) = op(fold(𝑏, op, 𝑢), 𝑎).
The streaming (serial) composition combinator is given by:

𝑓 : ST(𝐴, 𝐵) 𝑔 : ST(𝐵,𝐶)

𝑓 ≫ 𝑔 : ST(𝐴,𝐶)
(𝑓 ≫ 𝑔) (𝑎) = 𝑔(𝑓 (𝑎))

We write ≫ to denote the composition of functions. For a stream transformation 𝑓 : ST(𝐴, 𝐵),
we write 𝑓 ↓ 𝑥 to indicate that 𝑓 (𝑥) is terminated, and 𝑓 ↑ 𝑥 to mean that 𝑓 (𝑥) is not terminated.
We say that 𝑓 halts on 𝑥 ∈ 𝐴†, denoted 𝑓 ⇓ 𝑥 , if the following hold: (1) 𝑓 (𝑥) is terminated, and
(2) 𝑓 (𝑦) is not terminated for every 𝑦 < 𝑥 . For a sequence 𝑢 ∈ 𝐴∗, we define (𝑢◁) · ◁−1 = 𝑢 and
𝑢 · ◁−1 = 𝑢. In other words, (− · ◁−1) is the operation that removes the end-of-stream marker
from a sequence if it is present. Using this notation, we define the temporal sequencing combinator
seq, and the temporal iteration combinator iter in Figure 6. Notice that iter(𝑓 ) is defined under the
assumption that 𝑓 (𝜀) is not terminated. This is required, because otherwise the computation of
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op : 𝐴→ 𝐵

𝑓 = map(op) : ST(𝐴, 𝐵)

𝑓 (𝜀) = 𝜀

𝑓 (𝑢𝑎) = 𝑓 (𝑢) · op(𝑎)

𝑓 (𝑢◁) = 𝑓 (𝑢)◁

p : 𝐴→ Bool

𝑓 = filter(p) : ST(𝐴,𝐴)

𝑓 (𝜀) = 𝜀, 𝑓 (𝑢◁) = 𝑓 (𝑢)◁

𝑓 (𝑢𝑎) = 𝑓 (𝑢) · 𝑎, if p(𝑎) = true

𝑓 (𝑢𝑎) = 𝑓 (𝑢), if p(𝑎) = false

𝑏 : 𝐵 op : 𝐵 ×𝐴→ 𝐵

𝑓 = aggr(𝑏, op) : ST(𝐴, 𝐵)

𝑓 (𝜀) = 𝜀

𝑓 (𝑢𝑎) = 𝑓 (𝑢) · fold(𝑏, op,𝑢𝑎)

𝑓 (𝑢◁) = 𝑓 (𝑢)◁

𝑏 : 𝐵 op : 𝐵 ×𝐴→ 𝐵

𝑓 = reduce(𝑏, op) : ST(𝐴, 𝐵)

𝑓 (𝑢) = 𝜀

𝑓 (𝑢◁) = fold(𝑏, op,𝑢)◁

𝐴 : Type

𝑓 = flatten(𝐴) : ST(List(𝐴), 𝐴)

(𝜕𝑓 ) (𝜀) = 𝜀, (𝜕𝑓 ) (𝑢◁) = ◁

(𝜕𝑓 ) (𝑢𝑙) = extract(𝑙)

𝐴 : Type out : List(𝐵)

𝑓 = emit(𝐴, out) : ST(𝐴, 𝐵)

(𝜕𝑓 ) (𝜀) = extract(out)◁

(𝜕𝑓 ) (𝑢) = 𝜀, if |𝑢 | > 0,

(𝜕𝑓 ) (𝑢◁) = 𝜀

𝑓 : ST(𝐴, 𝐵) 𝑓 ↑ 𝜀

𝑔 = iter(𝑓 ) : ST(𝐴, 𝐵)

𝑔 (𝑥) = 𝑓 (𝑥), if 𝑓 ↑ 𝑥

𝑔 (𝑢𝑥) = 𝑓 (𝑢)◁−1 · 𝑔 (𝑥), if 𝑓 ⇓ 𝑢

𝑔 (𝑢◁) = 𝑓 (𝑢◁)◁−1 · 𝑓 (𝜀), if 𝑓 ⇓ 𝑢◁

𝑓 : ST(𝐴, 𝐵) 𝑔 : ST(𝐴, 𝐵)

ℎ = seq(𝑓 , 𝑔) : ST(𝐴, 𝐵)

ℎ (𝑥) = 𝑓 (𝑥), if 𝑓 ↑ 𝑥

ℎ (𝑢𝑥) = 𝑓 (𝑢)◁−1 · 𝑔 (𝑥), if 𝑓 ⇓ 𝑢

ℎ (𝑢◁) = 𝑓 (𝑢◁)◁−1 · 𝑔 (𝜀), if 𝑓 ⇓ 𝑢◁

p : 𝐴→ Bool

𝑓 = takeUntil(p) : ST(𝐴,𝐴)

(𝜕𝑓 ) (𝜀) = 𝜀 and (𝜕𝑓 ) (𝑢◁) = 𝜀

(𝜕𝑓 ) (𝑢𝑎) = 𝜀, if p′ (𝑢) = true

(𝜕𝑓 ) (𝑢𝑎) = 𝑎, if p′ (𝑢) = false and p(𝑎) = false

(𝜕𝑓 ) (𝑢𝑎) = 𝑎◁, if p′ (𝑢) = false and p(𝑎) = true

𝑓 : ST(𝐴, 𝐵) 𝑔 : ST(𝐴, 𝐵)

ℎ = par(𝑓 , 𝑔) : ST(𝐴, 𝐵)

(𝜕ℎ) (𝑢) = (𝜕𝑓 ) (𝑢)◁−1 · (𝜕𝑔) (𝑢)◁−1, if 𝑓 ↑ 𝑢 or 𝑔 ↑ 𝑢.

(𝜕ℎ) (𝑢) = (𝜕𝑓 ) (𝑢)◁−1 · (𝜕𝑔) (𝑢)◁−1◁, if 𝑓 ↓ 𝑢 and 𝑔 ⇓ 𝑢.

(𝜕ℎ) (𝑢) = (𝜕𝑓 ) (𝑢)◁−1 · (𝜕𝑔) (𝑢)◁−1◁, if 𝑓 ⇓ 𝑢 and 𝑔 ↓ 𝑢.

(𝜕ℎ) (𝑢) = 𝜀, otherwise

key : 𝐴→ 𝐾 𝑓 : ST(𝐴, 𝐵)

𝑔 = groupBy(key, 𝑓 ) : ST(𝐴, 𝐵)

(𝜕𝑔) (𝜀) = 𝜀

(𝜕𝑔) (𝑢𝑎) = (𝜕𝑓 ) (𝑢 |key(𝑎) · 𝑎)◁
−1

(𝜕𝑔) (𝑢◁) =
(
∏

𝑛

𝑖=1
(𝜕𝑓 ) (𝑢 |𝑘𝑖◁)◁

−1)
◁

𝑛 ≥ 1 𝑓 : ST(𝐴, 𝐵)

𝑔 = tWindow(𝑛, 𝑓 ) : ST(𝐴, 𝐵)

𝑔 (𝑢) = 𝑓 (𝑢)◁−1, if |𝑢 | < 𝑛

𝑔 (𝑢◁) = 𝑔 (𝑢)◁, if |𝑢 | < 𝑛

𝑔 (𝑢𝑥) = 𝑓 (𝑢◁)◁−1 · 𝑔 (𝑥), if |𝑢 | = 𝑛

Fig. 6. Semantics: map, filter, reduce, aggr, seq, iter, emit, flatten, takeUntil, par, groupBy and tWindow.

iter(𝑓 ) would enter an infinite loop of halting and restarting without consuming any input. The
definition of groupBy(key, 𝑓 ) in Figure 6 uses the incremental viewpoint for notational brevity.
For a sequence 𝑢 ∈ 𝐴∗ and a key 𝑘 ∈ 𝐾 , we write 𝑢 |𝑘 to denote the subsequence of 𝑢 that
contains the items whose key is equal to 𝑘 . More formally, 𝜀 |𝑘 = 𝜀, (𝑢𝑎) |𝑘 = 𝑢 |𝑘 if key(𝑎) ≠ 𝑘 , and
(𝑢𝑎) |𝑘 = 𝑢 |𝑘 ·𝑎 if key(𝑎) = 𝑘 . In the third case (𝜕𝑔) (𝑢◁) of the groupBy(key, 𝑓 ) definition, we use

∏

as a generalization of concatenation to arbitrarily many arguments. Moreover, 𝑘1, 𝑘2, . . . , 𝑘𝑛 is taken
to be the sequence of keys that appear in the sequence𝑢 (in their order of appearance). The definition
of the transformations emit and flatten both require the extract combinator extract : List(𝐴) → 𝐴∗,
given by extract(nil) = 𝜀 and extract(cons(𝑎, 𝑙)) = 𝑎 · extract(𝑙). In the definition of takeUntil(p),
we lift the predicate p on 𝐴 to the predicate p′ on 𝐴∗, where, for a sequence 𝑢 ∈ 𝐴∗, p′(𝑢) = true

if there exists an item 𝑎 in 𝑢 such that p(𝑎) = true, and p′(𝑢) = false if for all 𝑎 in 𝑢 such that
p(𝑎) = false. In the definition of the parallel composition, given stream transformations 𝑓 and 𝑔,
par(𝑓 , 𝑔) emits the end-of-stream marker only when 𝑓 and 𝑔 have both terminated. Finally, in the
definition of tWindow(𝑛, 𝑓 ) and emit(out) in Figure 6, |𝑢 | denotes the length of 𝑢.

Lemma 4.1 (Expressive Completeness). Let 𝑓 : ST(𝐴, 𝐵) be a stream transformation. If 𝑓
is computable, then there is a query of type Q(𝐴, 𝐵) that computes it.

Proof. A streaming algorithm for 𝑓 can be viewed as an automaton A = (𝑆, init, next, out),
where 𝑆 is a (potentially infinite) state space, init ∈ 𝑆 is the initial state, next : 𝑆 × (𝐴 ∪ {◁}) → 𝑆
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is the state transition function, and out : 𝑆 → 𝐵† is the output function. We put 𝑆 = 𝐴†, init = 𝜀,
next (𝑠, 𝑎) = 𝑠𝑎, next (𝑠,◁) = 𝑠◁, out (𝑠) = (𝜕𝑓 ) (𝑠), and out (𝑠◁) = (𝜕𝑓 ) (𝑠◁) for every 𝑠 ∈ 𝐴∗ and
𝑎 ∈ 𝐴. The execution of A is an obvious generalization of the execution of finite-state automata.
Since 𝑓 is computable, so are next and out . It remains to show that the execution of A can be
encoded by a query of type Q(𝐴, 𝐵). Let 𝛿 : 𝑆 ×𝐴 → 𝑆 be the restriction of next to 𝑆 ×𝐴. Define

f = par(emit(𝐴, [init]), aggr(init, 𝛿), reduce(init, 𝛿) ≫ map(𝑥 -> next (𝑥,◁)) : Q(𝐴, 𝑆) .

The query f transforms the stream of input items (of type 𝐴) into the stream of states (of type 𝑆)
that the automaton A goes through. Let 𝜗 : 𝑆 → Bool be the function that indicates whether a
state is halting or not, that is, for all 𝑠 ∈ 𝑆 , 𝜗 (𝑠) = true iff out (𝑠) ends with ◁. Then, the query
g = takeUntil(𝜗) : Q(𝑆, 𝑆) takes a stream of states and echoes them up until (and including) the
first halting state. Let 𝑜 : 𝑆 → 𝐵∗ be given by 𝑜 (𝑠) = out (𝑠) ·◁−1. The query h = flatten(map(𝑜)) :

Q(𝑆, 𝐵) takes a stream of states as inputs and emits the corresponding flattened output. Finally, the
query f≫ g≫ h : Q(𝐴, 𝐵) computes the stream transformation 𝑓 . □

We will use an example to illustrate the construction in the proof of Lemma 4.1. Suppose the
input is 𝑎 = 𝑎1𝑎2𝑎3◁. Define the states 𝑠0 = init , 𝑠𝑖+1 = next (𝑠𝑖 , 𝑎𝑖+1), and 𝑡𝑖 = next (𝑠𝑖 ,◁). The
output of f on 𝑎 is 𝑠 = 𝑠0𝑠1𝑠2𝑠3𝑡3◁. Suppose that 𝑠2 is the first halting state. Then, the output of g
for input 𝑠 is 𝑡 = 𝑠0𝑠1𝑠2◁. Finally, the output of h for input 𝑡 is 𝑜 (𝑠0) · 𝑜 (𝑠1) · 𝑜 (𝑠2) · ◁ = 𝑓 (𝑎).
Significance of Lemma 4.1. Having a formal denotational semantics allows us to pose a well-

defined question of whether the query language is expressively complete. It is not difficult to prove
the lemma, as the essence of the proof is encoding the execution of a transducer (state machine) that
implements the desired stream transformation. Notice, however, that the lemma can fail in subtle
ways if some small changes are made to the language. For example, if the constructs flatten
and par are removed, then the language becomes incomplete as all queries produce at most one
output item per input item. If the emit construct is removed, then no query can emit output at the
beginning of the computation (i.e., before the input is seen). So, Lemma 4.1 serves as a sanity check
that there is no important omission from the list of the language constructs.

5 JAVA IMPLEMENTATION

In this section, we will describe the implementation of StreamQL. We have chosen to implement
StreamQL as an embedded domain-specific language in Java (effectively a Java library) in order to
allow for easy integration with user-defined types and operations. The implementation covers all
the core constructs we introduced in Section 2 and also provides a rich set of specialized algorithms
for real-world applications, such as efficient algorithms for aggregation over windows and a variety
of signal processing primitives: FFT (Fast Fourier Transform), Hilbert Transform, FIR (Finite Impulse
Response) filters, and IIR (Infinite Impulse Response) filters.
The left part of Figure 7 gives a simple example of a StreamQL program in Java. Given a signal

measurement of type VT that contains a double value in the field of val, the query sum of type Q
computes the sum of the values of the measurements. The method eval returns an object that
encapsulates the evaluation algorithm for the query. The methods init and next are used to
initialize the memory and consume data items. When the input stream terminates, the end method
is invoked.

We define two interfaces, Sink and Algo, to describe the streaming computation in a push-based
manner. The Algo interface is used to implement stream transformations. The Sink interface is
similar to the Observer interface of Rx. It is used for specifying a sink that consumes a stream.
A sink consumes a stream with two methods, next and end, that are used for stream elements
and the end-of-stream marker respectively. The top-right part of Figure 7 shows the definition of
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// VT is the type of measurements,

// which contains a double value as val

Iterator<VT> stream = ... // input stream

// sink of the output stream

Sink<Double> sink = ...

// sum of the measurements

Q<VT,Double> sum =

QL.aggr(0.0, (s, vt) -> s + vt.val);

// evaluation of the query

Algo<VT,Double> exe = sum.eval();

// connect the output of query to sink

exe.connect(sink);

// execution loop

exe.init();

while (stream.hasNext()) {

VT vt = stream.next();

exe.next(vt);

}

exe.end();

abstract class Sink<T> {

// deal with incoming items

abstract void next(T item);

// deal with the end-of-stream marker

abstract void end();

}

class Printer<T> extends Sink<T>{

// print each arrived data item

void next(T item) { print(item); }

// print "Job done" when input ends

void end() { print("Job done"); }

}

abstract class Algo<A,B> extends Sink<A>{

// connect to a sink

abstract void connect(Sink<B> sink);

// initialize or reset the memory

abstract void init();

}

Fig. 7. Example that computes the sum of a nonempty sequence of measurements (left). The Sink interface

(top-right). An instance of Sink (mid-right). The Algo interface (bottom-right).

the Sink interface in Java, and the mid-right part presents an instance of Sink that prints each
incoming data item and the end-of-stream marker to the console.

The Algo interface is used for describing the evaluation algorithm of a query. An implementation
of Algo specifies how the input stream is transformed into the output stream. The bottom-right part
of Figure 7 shows the definition of the Algo interface, which extends the Sink interface because it
consumes a stream. The connect method connects the algorithm to a sink, and the init method
initializes/resets the state of the algorithm.
RxJava and similar libraries use nested streams (e.g., Observable⟨Observable⟩ in RxJava) to

decompose the input stream into windows or grouped sub-streams. StreamQL, on the other hand,
eliminates the overheads introduced by the construction of nested streams. For instance, the left
part of Figure 8 presents the algorithm for tumbling windows. Given the size of the window and a
sub-query, the tumbling window splits the stream into contiguous non-overlapping windows and
applies the sub-query to the data items of each window. We provide an algorithm for tumbling
windows with a small memory footprint. The algorithm sends the incoming data items to the
sub-query and maintains a counter that records the number of data items in the window. When the
current window becomes full, the algorithm resets the internal state of the sub-query. In contrast,
to implement a tumbling window, Rx-like libraries construct nested streams to decompose the
input stream as several stream objects. Whenever the current window becomes full, a new window
is created and it is represented as a stream object. Moreover, to produce the output stream, some
additional overhead is introduced to merge (flatMap in RxJava) the output sub-streams that are
created from the individual windows. The construction of nested streams is a source of overheads.
In Section 6, we experimentally validate these overheads and observe that our implementation of
tumbling windows is faster compared to Rx-like libraries. Our Java library avoids the overheads
of nested streams for all other computations that involve stream decomposition, such as sliding
windows and key-based partitioning (group-by construct).

The Algo interface facilitates the implementation of the constructs seq and iter. The windows
of Rx and Trill cannot encode these constructs, as seq and iter decompose the input stream in a
data-dependent way. Recall that a query seq(f, g) starts executing as f and after f terminates it
continues executing as g. This computation thus splits the input stream into two parts. If Rx was
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class TWnd<A,B> extends Algo<A,B> {

private final int size;

// algorithm of the sub-query

private final Algo<A,B> algo;

private Sink<B> sink;

// counter of items in the window

private int cnt;

TWnd(int size, Algo<A,B> algo) {

this.size = size;

this.algo = algo;

}

void connect(Sink<B> sink) {

this.sink = sink;

// sink for the sub-query that transfers

// its output to the output of TWnd

Sink<B> subSink = new Sink<B>() {

void next(B item) { sink.next(item); }

// discard the end-of-stream marker

void end() { }

};

algo.connect(subSink);

}

void init() { cnt = 0; }

void next(A item) {

// reset algo if old window is full

if (cnt == 0) { algo.init(); }

algo.next(item);

cnt = (cnt + 1) % size;

if (cnt == 0) { algo.end(); }

}

void end() { sink.end(); }

}

class Seq<A,B> extends Algo<A,B>{

// algorithms of the sub-queries

private final Algo<A,B> left;

private final Algo<A,B> right;

// pointer of the current active algorithm

private Algo<A,B> active;

Seq(Algo<A,B> left, Algo<A,B> right) {

this.left = left;

this.right = right;

}

void connect(Sink<B> sink) {

// sink for the left algorithm that

// activates right when left terminates

Sink<B> leftSink = new Sink<B>() {

void next(B item) {

sink.next(item);

}

void end() {

active = right;

right.init();

}

};

left.connect(leftSink);

right.connect(sink);

}

void init() {

active = left;

left.init();

}

void next(A item) { active.next(item); }

void end() { active.end(); }

}

Fig. 8. The Java implementation of the tumbling window (left) and stream sequencing (right) constructs

somehow extended to accommodate these constructs, its design would still incur the overheads
associated with the representation of sub-streams as nested stream objects. Figure 8 shows our
implementation of the seq construct. Notice that all data items are simply routed to the appropriate
algorithm/sink without creating any intermediate objects. In the connect method, we provide
a sink for the left algorithm that activates the right algorithm once left terminates. The
implementation of iter uses similar ideas.

6 EXPERIMENTAL EVALUATION

We evaluate the performance of our library using four benchmarks: (1) a micro-benchmark that
focuses on basic operators, (2) a benchmark for pattern detection in real-time stock market data,
(3) the popular NEXMark benchmark [Tucker et al. 2002], and (4) TAQMark for the analysis of
high-frequency market data. We compare our implementation with RxJava, Rx.NET, Reactor, Siddhi,
and Trill. These are chosen because they are all lightweight and high-performance streaming
engines that offer rich APIs and have well-maintained implementations. RxJava, Reactor, and Siddhi
are implemented in Java, while Rx.NET and Trill are implemented in .NET. Since there is no .NET
implementation of StreamQL, we only test Rx.NET and Trill using the micro benchmark to obtain
a very rough comparison, and leave the .NET implementation of StreamQL as future work.

Experimental setup. The experiments were executed in Ubuntu 16.04 LTS on a desktop computer
equipped with an Intel Xeon(R) E3-1241 v3 CPU (4 cores) with 16 GB of memory (DDR3 at 1600
MHz). For Java programs, we used version 1.8.0_181-b13 of the JDK, and we set the maximum heap
size at 3.5 GB. For .NET programs, we used the NET Core 3.1.100 SDK with C# 8.0. To test the
performance of Trill, we set the batch size to 1000 for its columnar representation (as suggested by
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Fig. 9. (a) and (b) show the throughput (y-axis) of twnd-sum queries with different window size (x-axis). (c)

shows the throughput speedup (y-axis) of StreamQL comparing to other libraries.

its official documentation [Trill 2020]). All data points in our experiments represent the average of
at least five runs, with error bars showing the standard deviation.

Overhead of nested streams. In contrast to Rx-like libraries, StreamQL avoids the overhead
brought by the construction of nested streams. To quantify the improvement in performance gained
by reducing these overheads, we test the throughput of queries that involve the decomposition of
the input stream, which leads to the construction of nested streams in Rx-like libraries. We create
an input stream of timestamped integers of the form {ts, val} as ł{1, 1}, {2, 2}, ..., {𝑛, 𝑛}ž, where
both the timestamp ts and the data value val are integers, and 𝑛 is set to be 100 million. We use the
tumbling window construct to split the input into non-overlapping regions and compute the sum
of integers in each region. In our experiments, we measure the throughput of this twnd-sum query
with various window sizes, where the window size specifies the number of integers contained in a
window, and a small window size leads to the creation of a large number of windows. This leads to
the allocation of many nested stream objects in Rx-like libraries.
Figure 9 shows the throughput of queries that sum the integers over tumbling windows of

various sizes. Figure 9(a) presents the throughput in libraries (RxJava, Rx.NET, and Reactor) that
decompose the input by nested streams. The results indicate that the construction of nested streams
is a significant overhead: when the window size is small (e.g., 4), the throughput is 3 times lower
than when the window size is large (e.g., 150). This suggests that the intensive construction of
nested streams largely decreases the throughput of stream processing. In Figure 9(b), we show
the throughput of our StreamQL library along with RxJava, Rx.NET, Reactor, Trill and Siddhi. In
comparison to RxJava, Rx.NET, Reactor and Siddhi, the throughput of StreamQL queries remains
stable with regards to different size of tumblingwindows. Finally, Figure 9(c) presents the throughput
speedup of StreamQL with respect to other libraries. By avoiding the construction of nested streams,
StreamQL provides significant performance speedup when the input stream is decomposed into
a large number of windows, and it is more than 3 times faster than Rx-like libraries even when
the size of the window is large (e.g. 150) as StreamQL also eliminates the overhead of flattening
nested sub-stream objects. The performance of Trill is stable as its windowing operator works by
altering the interval timestamp of each stream element. Trill enriches each raw input data item
with a łtemporal validityž annotation (interval timestamp) to obtain a stream element of type
StreamEvent. This choice for the temporal and data model has certain semantic advantages, but it
also introduces computational costs to incorporate this additional time information.
To further investigate the overheads, we analyze the memory allocation of the twnd(sum)

computation for StreamQL, RxJava, and Reactor. We measured the size of total allocated memory
on the heap, and we estimated the memory size for intermediate data structures by subtracting
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Fig. 10. Figure (a) shows the size of intermediate memory (GiB, y-axis) of twnd-sum queries. Figure (b) shows

the garbage collection time (ms, y-axis) of twnd-sum queries. Figure (c), (d), and (e) show the ratio of the

execution time on the aggregation calculation to the total execution time for StreamQL, RxJava, and Reactor.

the memory allocated for the input/output streams from the total allocated memory. Figure 10(a)
presents the estimation. The StreamQL implementation allocates almost zero additional memory
since it uses a counter to record the number of items in the window and maintains the aggregate
using a single variable. RxJava and Reactor allocate a significant amount of intermediate memory
when the window size is small, which is mainly composed of the nested stream objects (e.g.,
InnerObserver in RxJava), subscription objects (e.g., UnicastSubject in RxJava), and internal
data buffers (e.g., SpscLinkedArrayQueue in RxJava). We also measured the garbage collection
(GC) time of the twnd(sum) computation. The result is shown in Figure 10(b). In addition, we
measured the ratio of GC time to total CPU execution time on the main thread, and we observed
this ratio is lower than 1% for StreamQL, RxJava, and Reactor. Moreover, we measured the CPU
execution time for the twnd(sum) query. We estimated the overheads by measuring the time ratio
of the cost of the aggregation calculation to the total execution time (higher ratio indicates lower
overheads). To illustrate, we aggregated an integer stream using the function 𝑓 (𝑎𝑔𝑔, 𝑥) = 𝑎𝑔𝑔+3𝑛 ·𝑥 ,
where 𝑛 is an integer that controls the complexity of the computation, and when 𝑛 = 0, the
aggregation is exactly the sum computation. Figure 10(c), (d), and (e) show the results for StreamQL,
RxJava, and Reactor. In our observation, when the size of the tumbling window is small (10 items)
and the computation per item is cheap (𝑛 = 0), more than 70% of the time cost in RxJava (80% in
Reactor) on the main thread is caused by function calls related with the construction of nested
streams, which include the creation of the stream objects (e.g., InnerObservable.create() in
RxJava), the communication between the stream objects and the corresponding data consumers
(e.g., ObservableFlatMap.drain() in RxJava), and the management of the data subscriptions (e.g.,
Subject.create() in RxJava).

Efficient sliding window aggregation. The StreamQL library provides efficient algorithms for
aggregations over sliding windows. When the aggregation is given by a binary function op, then
efficient algorithms [Hirzel et al. 2017; Li et al. 2005; Tangwongsan et al. 2015] can be given for
the special cases where (1) op is associative, and (2) op is associative and invertible. Consider the
aggregation max. The implementation of max over a sliding window of size 𝑛 requires a buffer of
size 𝑛 (to store the contents of the window) [Datar et al. 2002]. Every time a new item arrives, the
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Fig. 11. The left-three figures show the throughput (y-axis) of swnd-sum queries with different window sizes

(log10(# of items), x-axis) and a fixed sliding interval in RxJava, Reactor, and Rx.NET. The right-most figure

shows the throughput speedup (y-axis) of efficient implementations compared with the default settings.

naive algorithm scans through the entire window to calculate the new maximum, which requires
𝑂 (𝑛) time. Since max is associative, there is a better algorithm, which maintains a tree of partial
aggregates and only needs 𝑂 (log𝑛) time at each step [Arasu and Widom 2004]. For a function
op that is invertible (e.g., sum and count) there is an obvious efficient algorithm, which requires
𝑂 (1) time at each step (ładdž the new item, łsubtractž the item falling off the window). Libraries
such as Trill and Siddhi also provide efficient algorithms for sliding window aggregation. RxJava,
Rx.NET, and Reactor, on the other hand, do not incorporate such algorithms. After creating custom
constructs for efficient sliding window aggregation in RxJava, Rx.NET, and Reactor, we compare the
performance of our customized constructs with the default constructs. We measure the throughput
of queries that sum the integers over sliding windows that have a fixed sliding interval (one item)
but different lengths, and we show the results in Figure 11. The results suggest that the efficient
algorithm is more than 5000 times faster than the default algorithm when the window size is large
(e.g., 10,000) and it is about 5 times faster when the size of the window is small.

Remark. To make fair comparisons among StreamQL, Rx, and Reactor, for all queries that
involve aggregation over sliding windows in the following benchmarks, we program them using
our customized constructs and then test their throughput.

Micro Benchmark. We run several basic streaming computations over an input stream of
timestamped integers, and the queries are: map selects the value of each input item, filter removes
items with odd integer values, and sum calculates the sum of the values. The qualifiers tw, sw
and grp refer to aggregation over tumbling windows, sliding windows, and key-based partitions
respectively. The qualifier gtw(gsw) refers to tumbling (sliding) window aggregation over key-based
partitions. All the queries were executed with a stream of timestamped integers. For computations
that involve key-based partitioning, we set the key function as key(𝑥) = 𝑥 .val mod 100, and for
windows, we always fix the window size to be 100 and the sliding interval to be 1 (if it is a sliding
window). Moreover, for sequential aggregation, although StreamQL provides built-in constructs
for arithmetical computations, we write queries using primitives to make fair comparisons with
libraries that do not provide such features. For example, we use reduce(0, (sum, x)-> (sum+x.val))
to compute the sum of input values.
The results are shown in Figure 12. (1) StreamQL is 2ś100 times faster than Siddhi. The reason

for the performance gap is that Siddhi creates complex event objects to ingress the data and
queues the data to achieve streaming composition; both of these bring computational overheads.
(2) In the comparison to RxJava, for trivial operators (filtering, mapping and aggregation), there
is no significant difference between StreamQL and RxJava. For operations that involve tumbling
windows and key-based partitioning, StreamQL is about 2ś3 times faster than Rx-like libraries, as
it eliminates the overheads brought by nested streams. For sliding window operations, we measure
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Fig. 12. Throughput (# items/sec, y-axis) of StreamQL, RxJava, Rx.NET, Reactor, Trill, and Siddhi (left to right)

in the micro benchmark.

the performance of customized constructs in RxJava to make fair comparisons, where the constructs
implement efficient algorithms for sliding window aggregation. Therefore, there is no significant
difference between StreamQL and RxJava (without these constructs, StreamQL is more than 100
times faster than RxJava). (3) StreamQL is 3ś10 times faster than Reactor. In design, Reactor and Rx
share many similarities, and Reactor also suffers from the overheads brought by nested streams.
(4) In the comparison to Rx.NET and Trill, the results are largely influenced by the performance
gap between the Java framework and the .NET framework. Therefore, we can only have a rough
comparison between StreamQL and these two libraries.

Stock Benchmark. The stock benchmark [Agrawal et al. 2008; Chandramouli et al. 2010;
Demers et al. 2007; Gyllstrom et al. 2007] uses a synthetic stream of stock quotes that are of the form
{stockId, price, volume, timestamp}. We consider four families of queries for pattern detection:
S1 detects three consecutive quotes whose volumes are all above a threshold, S2 detects three
consecutive quotes whose prices increase continuously, S3 detects five consecutive quotes whose
prices fluctuate in a V-pattern (down, down, up, up), and S4 detects price peaks. For every query
family there are three variants: a. concerns a specific stock, b. detects the pattern for each stock
independently, and c. considers each stock over an 1-minute tumbling window. The experimental
results are given in Figure 13. For pattern detection that concerns a specific stock (S1a, S2a, S3a,
and S4a), StreamQL is about 10-15 times faster than RxJava and Reactor, and 70-100 times faster
than Siddhi. When the computation involves excessive stream partitioning (queries labeled by
variants b and c), the total computational cost mostly depends on the cost of stream partitioning,
and StreamQL is around 3 times faster than RxJava, 4 times faster than Reactor, and 10-20 times
faster than Siddhi since it eliminates the construction of nested streams.

NEXMark. NEXMark [Tucker et al. 2002] is about monitoring an on-line auction system. Its data
stream has four kinds of events: Person represents the registration of a new user, Item indicates
the start of an auction for a specified item, Bid records a bid made for an auctioned item, and
Close indicates the end of an auction. We used eight queries: N1 converts the price of each bid
to another currency, N2 searches for auctions of a specific set of items, N3 counts the number of
bids submitted in the US, N4 calculates the average selling price of items for each auction category,
N5 outputs the item with the most bids in the last 10 minutes, N6 computes the average selling
price per seller for their last 10 closed auctions, N7 finds the highest bid every 1 minute, and N8
calculates, every 12 hours, the number of new user registrations . Figure 13 shows the experimental
results: StreamQL is 1.1ś3 times faster than RxJava, 1.5ś15 times faster than Reactor, and 5ś50
times faster than Siddhi.

TAQ Benchmark. We use data from the NYSE TAQ database [TAQ 2019], which collects real-
time trades and quotes reported on the U.S. Consolidated Tape (where billions of entries are recorded
per day). We implemented the following queries: T1 filters out events that are outside normal NYSE
hours, T2 computes the running average price for each stock, T3 computes the average price for
each stock over a tumbling window, T4 (T5) computes the sequence of trading intervals (durations

Proc. ACM Program. Lang., Vol. 4, No. OOPSLA, Article 183. Publication date: November 2020.



183:22 Lingkun Kong and Konstantinos Mamouras

S1a
0 M

20 M

40 M

S1b
0 M

2 M

4 M

S1c
0 M

2 M

4 M

S2a
0 M

20 M

40 M

S2b
0 M

2 M

4 M

S2c
0 M

2 M

4 M

S3a
0 M

20 M

40 M

S3b
0 M

2 M

4 M

S3c
0 M

2 M

4 M

S4a
0 M

20 M

40 M

S4b
0 M

2 M

4 M

S4c
0 M

2 M

4 M

N1
0 M

10 M

20 M

N2
0 M

100 M

200 M

N3
0 M

100 M

200 M

N4
0 M

20 M

N5
0 M

2 M

4 M

N6
0 M

100 M

200 M

N7
0 M

10 M

N8
0 M

100 M

StreamQL
RxJava
Reactor
Siddhi

T1
0 M

10 M

20 M

T2
0 M

10 M

20 M

T3
0 M

10 M

20 M

T4
0 M

10 M

20 M

T5
0 M

10 M

20 M

T6
0 M

10 M

20 M

T7
0 M

10 M

20 M

T8
0 M

5 M

10 M

T9
0 M

10 M

20 M

T10
0 M

5 M

10 M

Fig. 13. Throughput (# items/sec) of StreamQL, RxJava, Reactor, and Siddhi (left to right) in the stock

benchmark (S1a-S4c), NEXMark (N1-N8), and TAQMark (T1-10).

between consecutive transactions) for a specific (each) stock, T6 counts the number of odd lots
(trades with less than 100 shares) for each stock, T7 (T8) computes the best bid and offer for a
specific (each) stock over a tumbling window, and T9 (T10) calculates the true value estimate for a
specific (each) stock over a tumbling window. Figure 13 shows the results: StreamQL is generally
1.2ś2 times faster than RxJava, 2ś10 times faster than Reactor, and 8ś100 times faster than Siddhi.

6.1 Multicore Processing

Applications that handle massive data streams have scalability requirements and would therefore
benefit from a multicore implementation of the streaming engine. Here we discuss some steps we
have taken towards a parallel implementation of StreamQL. We also explain some challenges that
the parallelization of StreamQL presents. Due to these challenges, we leave the full development of
a parallel StreamQL implementation for future work.

StreamQL allows the arbitrary composition of dataflow/relational operators (whose paralleliza-
tion is typically easier) and of sequence-dependent temporal operators (which introduce unavoidable
synchronization points). For example, pipelines and group-by queries can be easily parallelized. On
the other hand, the temporal operators that we provide (e.g., take, search, seq, iter) are inher-
ently sequential. If the top-level operators, for example, are nested iter and seq (e.g., ECG peak
detection), then there are frequent synchronization points and hence no benefit from parallelization.
The full elaboration of parallelization in the context of StreamQL language presents unique

challenges concerning the preservation of the sequential semantics. We should note that preserving
the sequential semantics is crucial in applications with strict requirements of correctness and repro-
ducibility (e.g., healthcare or financial applications). There are certain parallelization patterns where
the sequential semantics is preserved without any effort. These include pipelines and queries of
the form groupBy(reduce(op)). In the general case, however, StreamQL allows order-dependent
computations, for which naive parallelization introduces nondeterminism and unpredictability.
A relatively simple case concerns stateless queries f, which can be parallelized by splitting the
input stream across several instances of f (workers) and then merging the output sub-streams
produced by the workers. The merging stage can introduce disorder, but the correct order can be
restored by assigning sequence numbers to all data items so that they are reordered appropriately.
Such simple order-restoration schemes with sequence numbers [Schneider et al. 2015], punctua-
tions/markers [Mamouras et al. 2019], and timestamps (Trill) are not sufficient for the full StreamQL
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Fig. 14. Comparison of the scalability between StreamQL and RxJava for pipeline, map, and groupBy(sum).

language, because of the deep nesting of order-dependent constructs. For example, par(f1, f2) can
be parallelized correctly using (scalar) sequence numbers, but par(f1 ≫ par(g1, g2), f2) would
require a kind of vector sequence numbers to deal with the nesting of parallelization constructs.
StreamIt [Thies et al. 2002] also addresses semantic preservation, but it sidesteps these difficult
cases by restricting the language to a łsynchronousž subset: it has copy and round-robin splitters
but disallows value-based stream splitting. RxJava and Siddhi offer no guarantee of semantics
preservation upon parallelization.
StreamQL contains constructs that can be parallelized to exploit multicore architectures. We

will describe now a preliminary investigation of parallelizing pipeline, groupBy(reduce(op)),
and map. For these constructs, we provide parallel implementations, and we evaluate the throughput
scalability against RxJava. The experiments were executed in Ubuntu 16.04 with an Intel Xeon(R)
E7-4830 v2 CPU (10 cores with hyperthreading) and 52 GB of memory. In the experiments, we first
measured the throughput of the sequential implementation using StreamQL and RxJava. Then, we
measured the throughput of the parallel implementation for a variable number of workers and
calculated the speedup compared to the sequential implementation. The parallel implementation
has one thread for each worker, as well as two threads for the stream splitter and the output merger.
In the experiments, we used a function 𝑓 , parameterized by 𝑛, which is given by 𝑓 (𝑥) = 3𝑛 · 𝑥 . This
allows us to assess scalability as the primitive operation 𝑓 becomes increasingly compute-heavy
(by increasing the parameter 𝑛).

Pipeline. To evaluate the performance of the parallel pipeline, we consider a pipeline of 120
stages, each of which is map(𝑓 ). The pipeline stages are partitioned uniformly across the worker
threads. For example, when there are 12 workers, each worker handles the computation of 10
consecutive stages. The result is shown in Figure 14(a) and (b).
GroupBy(Reduce). To evaluate the parallel version of groupBy(reduce(op)), we assign each

input integer 𝑥 to a partition using the key-extraction function 𝑘𝑒𝑦 (𝑥) = 𝑥 mod 1024. The aggre-
gation function op is given by op(𝑎𝑔𝑔, 𝑥) = 𝑎𝑔𝑔 + 𝑓 (𝑥). Recall that the parameter 𝑛 controls the
computational cost of 𝑓 and hence op. Each worker thread handles the computation for a subset of
the keys. To ensure correctness, we send input items with the same key to the same worker using a
splitter thread. Since we are performing a reduce operation, the merger thread simply collects the
final per-key aggregates when the input stream terminates. Figure 14(c) and (d) show the results
for StreamQL and Rx respectively.
Map. We also consider a parallel version of map(𝑓 ). In our implementation, each worker has an

input buffer and an output buffer. The worker reads the data item from the input buffer, processes
the data, and sends the result to the output buffer. Different from operations like pipeline and
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groupBy(reduce(op)), to preserve the sequential semantics of the map query, we need to ensure
the correct order of the output stream by reordering output items. We provide two implementations:
(I) one that preserves the sequential semantics, and (II) one that allows the worker threads to
output items as they become available (nondeterministic output order). For implementation (I),
a round-robin splitter assigns input items to workers, and the merger thread merges the output
sub-stream from workers in a round-robin fashion. The results are shown in Figure 14(e), (f), (g).

Based on our experimental results, we observe that, for compute-heavy workloads (e.g., 𝑛 = 18),
StreamQL’s parallel pipeline, groupBy(reduce(op)), and map queries scale almost linearly for
up to 8 worker threads. The processor on which the experiments are executed has 10 cores and 2
threads are assigned to the main thread (input stream generation and splitter) and the thread that
merges and consumes the final output. Overall, we observe that the StreamQL is competitive against
RxJava in terms of throughput scalability for the three classes of queries that we investigated. We
leave for future work a more comprehensive experimental comparison. We have also investigated
for map queries the overhead that is caused by ensuring the correct output order. As seen in
Figure 14(h), the semantics-preserving implementation is 6% to 10% slower than the one that does
not preserve the sequential semantics. We leave for future work a more thorough investigation of
the overhead caused by other techniques for ensuring semantics-preserving parallelization.

7 CASE STUDY: ABP PULSE DETECTION

We will use StreamQL to specify a streaming algorithm for Arterial Blood Pressure (ABP) pulse
detection [O’Rourke 1971; Zong et al. 2003]. This is a complex streaming computation, and is
difficult to express with existing languages for stream processing. As we will see, StreamQL allows
a natural high-level specification of the algorithm. The use of a streaming query language for
medical monitoring applications has been considered in [Abbas et al. 2018, 2019].

(a)

(b)

(c)

Fig. 15. Examples of (a) raw ABP signal with onset

labels, (b) low-pass filtered signal, and (c) SSF signal.

The ABP signal is collected from the MIT-
BIH Polysomnographic database [Ichimaru and
Moody 1999]. The signal measurements are of
type VT = {val : V, ts : T}, where val is the
value of the signal and ts is the timestamp. The
signal is uniformly sampled at a frequency of
250 Hz. Figure 15 shows a snippet of an ABP sig-
nal containing 3 ABP pulses (around 3 seconds).
The ABP waveform contains rich information
about the cardiovascular system (e.g., heart rate,
systolic, mean, and diastolic arterial pressures).
Reliable ABP pulse detection is crucial for extracting this information.
First, the algorithm preprocesses the signal stream using a low-pass IIR filter and a slope sum

function (SSF), and then it performs the detection of the pulse onset.

low-pass (IIR) SSF detect
𝑥 (𝑛) 𝑦 (𝑛) 𝑧 (𝑛)

The low-pass filter suppresses high frequency noise, and is defined by 𝑦 (𝑛) = 2𝑦 (𝑛 − 1) − 𝑦 (𝑛 −

2) + 𝑥 (𝑛) − 2𝑥 (𝑛 − 5) + 𝑥 (𝑛 − 10). The SSF is defined by 𝑧 (𝑛) =
∑

0≤𝑖≤31𝑚𝑎𝑥 (0, 𝑑 (𝑛 − 𝑖)), where
𝑑 (𝑛) = 𝑦 (𝑛) − 𝑦 (𝑛 − 1). It enhances the up-slope of the ABP pulse and restrains the remainder of
the pressure waveform. The query getVTP : Q(VT, VTP) annotates each item {val, ts} of the input
stream with an additional component pval, which is the result of the preprocessing. The type
VTP = {val : V, ts : T, pval : V} extends VT with this additional component. These preprocessed
values have a phase shift of 20 ms (5 samples), which is introduced by low-pass filtering.
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The detection of ABP onset is described by the following rules: R1. In intervals where the SSF
value exceeds a threshold Thred (i.e. a tentative pulse), the algorithm selects the first and the
maximum SSF values. R2. The pulse detection is accepted only if the difference between the first
and the maximum SSF values exceeds 100. R3. When the pulse is accepted, the algorithm chooses
the first sample that crosses the threshold as the onset point. The detected onset is adjusted by
20 ms (5 samples) to compensate for the phase shift of low-pass filtering. R4. After an onset is
detected, to avoid double detection of the same pulse, the detection falls silent for 300 ms. Figure 16
shows the StreamQL implementation of the detection algorithm.

8 RELATED WORK

# preprocess the signal

lowPass = IIR( {−1, 2}, {1, 0, 0, 0, 0,−2, 0, 0, 0, 0, 1})

diff = sWindow(2, 1, (x, y) -> y − x)

sum = sWindow(32, 1, reduce( (x, y) -> (y > 0) ? (x + y) : x))

ssf = diff ≫ sum

preProc = map(x -> x.val) ≫ lowPass ≫ ssf

getVTP = annotate(preProc, (x, y) -> ⟨x.val, x.ts, y⟩)

# select signal interval containing a peak (R1)

pulse = takeWhen(x -> x.pval > Thred, x -> x.pval < Thred)

# select the first element in interval as the onset sample

# find the measurement with the maximum preprocessed value,

# and store them as a pair ⟨first, max⟩

select = reduce(x -> ⟨x, x⟩,

( ⟨f, m⟩, x) -> ⟨f, (x.pval > m.pval) ? x : m⟩)

# examine the detected pulse (R2) and project the onset

getOnset = filterMap( ⟨f, m⟩ -> m.pval − f.pval > 100, ⟨f, m⟩ -> f)

detect1 = getVTP ≫ pulse ≫ select ≫ check ≫ getOnset

rft = skip(75) # after detecting the ABP onset, apply R4

detectAll = seq(detect1, iter(rft ≫ detect1))

subShift = map(x -> x.ts − 5) # compensate for phase shift

ABPDetection = detectAll ≫ subShift

Fig. 16. StreamQL program for ABP pulse detection.

There is a large body of work on streaming
database systems such as STREAM [Arasu
et al. 2016], Aurora [Abadi et al. 2003], Bo-
realis [Abadi et al. 2005], CACQ [Madden
et al. 2002], TelegraphCQ [Chandrasekaran
et al. 2003], Niagara [Naughton et al. 2001],
Gigascope [Cranor et al. 2003], Nile [Ham-
mad et al. 2004], Microsoft’s CEDR [Barga
et al. 2007], and StreamInsight [Ali et al.
2009]. The languages supported by these
database systems (for example, CQL [Arasu
et al. 2006]) are typically variants of SQL
with additional streaming constructs for slid-
ing windows. These languages are limited
in their ability to perform computations that
depend on the order of arrival of data items,
such as detecting complex patterns.
There is a variety of systems for dis-

tributed stream processing that are based
on the distributed dataflow model of com-
putation: S4 [Neumeyer et al. 2010], IBM Streams [Biem et al. 2010], MapReduce Online [Condie
et al. 2010], Storm [Toshniwal et al. 2014], Summingbird [Boykin et al. 2014], Heron [Kulkarni
et al. 2015], Naiad [Murray et al. 2013], Spark Streaming [Zaharia et al. 2012, 2013], Flink [Carbone
et al. 2015], Google’s MillWheel [Akidau et al. 2013], Samza [Noghabi et al. 2017], and Beam [Beam
2020]. Many of these systems (including Storm, Heron, and Samza) expose a low-level API for
specifying a dataflow graph of operators, where each operator is given as a function for handling
events. Other systems (such as IBM Streams, Spark Streaming, Flink, and Beam) provide a higher-
level API to describe streaming computations. IBM Streams and Flink provide special operators
for pattern detection based on regular expressions. All these systems are engineered to provide
high throughput, scalability, load balancing, load shedding, fault tolerance and recovery. Spark
Streaming, for example, uses micro-batches to achieve high throughput and offers fault-recovery
guarantees. Since StreamQL is implemented as a Java library, it can be used in conjunction with
these systems. For example, an individual node of the dataflow graph (called łboltž in Storm) can
be programmed using StreamQL.

Several languages and tools have been proposed for Complex Event Processing (CEP), which is
concerned with the detection of complex patterns over event streams. These languages are typically
based on regular expressions [Zemke et al. 2007] and implemented using variants of finite-state
automata: SQL-TS [Sadri et al. 2004], SASE [Gyllstrom et al. 2007], Cayuga [Demers et al. 2007], and
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SPLMatchRegex [Hirzel 2012]. ZStream [Mei and Madden 2009] uses tree-based query plans instead
of automata for query evaluation. Several streaming engines (Trill [Chandramouli et al. 2014],
Esper [EsperTech 2006], Siddhi [Suhothayan et al. 2011], Flink [Carbone et al. 2015], Oracle Stream
Analytics [Corporation 2019] and IBM Streams [Biem et al. 2010]) provide specialized operators or
extensions for CEP. A common problem with CEP implementations is that they need to explore
all possible ways in which the input stream could be parsed to match a regular expression, which
causes an exponential worst-case blowup in space requirements. StreamQL solves this issue by
restricting the nondeterminism of the regular combinators (concatenation and iteration), which
results in an implementation with no overhead for pattern detection.

The Synchronous Dataflow (SDF) languages and models of computation are useful for making
explicit the parallelism present in streaming computations that arise in the embedded software
domain, including signal processing [Lee and Messerschmitt 1987] and embedded controller design
[Benveniste et al. 1991; Berry and Gonthier 1992; Caspi et al. 1987]. These formalisms are restrictions
of Kahn’s process networks [Kahn 1974; Kahn and MacQueen 1977]. The StreamIt language, in
particular, provides a general framework for streaming signal processing with efficient execution on
multi-core architectures [Thies et al. 2002]. Compared to the SDF formalisms, StreamQL provides
higher-level abstractions that are suitable for a more general class of streaming applications.
There are several lightweight streaming engines which are implemented as libraries within

a general-purpose host language. This facilitates integration with other systems and enables the
reuse of existing code for application-specific tasks. Microsoft’s Trill [Chandramouli et al. 2014]
is a high-performance streaming library that employs a batched-columnar data representation
and dynamic compilation. Trill provides mechanisms to handle out-of-order events and provides
extensions for pattern matching and signal processing [Chandramouli et al. 2018, 2010; Nikolic et al.
2017]. Esper [EsperTech 2006] and Siddhi [Suhothayan et al. 2011] are lightweight engines for CEP
and streaming analytics. They provide rich collections of operators including SQL-based constructs,
windows, and pattern matching. Java Stream [Oracle 2014] and Stream Fusion [Kiselyov et al.
2017] provide a simpler streaming API, which can be used for processing static collections of data.
StreamQRE [Mamouras et al. 2017] (see also [Alur and Mamouras 2017]) has been proposed as an
integration of unambiguous regular expressions with quantitative calculations and other streaming
constructs such as streaming composition. The core of StreamQRE is related to transducers with
registers that can hold values [Alur et al. 2020, 2017a, 2019] and other related models [Alur et al.
2017b]. KSQL [Jafarpour et al. 2019] is a streaming SQL engine for Apache Kafka, which provides
an interactive query interface with lightweight SQL syntax. InfluxDB [InfluxDB 2020] is a database
system that is optimized for time-series data. It implements two languages for querying data: (1)
InfluxQL, which is based on the syntax of SQL, and (2) Flux [Flux 2020], which has a more functional
syntax.
The survey paper [Bainomugisha et al. 2013] explores various approaches for reactive pro-

gramming. The work on functional reactive programming (FRP) focuses on the transformation of
time-varying values (signals). Some representative early languages are Fran [Elliott and Hudak
1997] and Yampa [Nilsson et al. 2003]. Several subsequent frameworks embed FRP in imperative
languages, such as Flapjax [Meyerovich et al. 2009], Frappé [Courtney 2001], and Scala.React [Maier
and Odersky 2012]. FRP has been used mainly for the development of event-driven and interactive
applications such as GUIs. Elm [Czaplicki and Chong 2013] is a practical FRP language focused on
easy creation of responsive GUIs. Libraries like Rx [Meijer 2012; ReactiveX 2020], Reactor [Reactor
2020], and Akka Streams [Lightbend 2020] have some similarity to the FRP languages, but deal with
streams of events rather than signals. These libraries expose data streams as push-based collections
(for example, Observable in Rx) and provide APIs for transforming these streams.
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StreamQL is related to traditional functional stream processing and stream fusion in particular.
Stream fusion refers to the automatic elimination of intermediate structures (e.g., lists) in the
execution of a program. This technique, derived from deforestation [Wadler 1990], has been studied
extensively [Coutts et al. 2007; Gibbons 2004; Gill et al. 1993; Johann 2001; Kiselyov et al. 2017;
Svenningsson 2002; Takano and Meijer 1995]. In StreamQL, the design of stream transformers
(transductions) allows us to avoid the materialization of intermediate streams/lists by using function
calls to propagate the elements as they are being generated. Some of StreamQL’s constructs (e.g.,
filter and map) can be understood in the framework of stream fusion. Other StreamQL constructs
(e.g., sliding windows and temporal iteration) are not encountered in prior work on stream fusion.
It is an interesting question whether these constructs can be incorporated into the framework of
stream fusion.

TheWaveScope project [Girod et al. 2007] highlights the need to combine event-stream processing
with signal processing for applications that make use of sensor-generated data streams. XStream
[Girod et al. 2008] is a streaming engine that was created to serve this goal. TrillDSP [Nikolic et al.
2017] enriches Trill with functionality for signal processing. Our StreamQL library also provides
operators for manipulating signals (e.g., support for FFT, FIR and IIR filtering, and so on).

9 CONCLUSION

We have introduced StreamQL, a language that specifies complex streaming computations as
combinations of stream transformations. StreamQL integrates relational, dataflow, and temporal
language constructs, thus providing an expressive and modular high-level approach for program-
ming streaming analyses. We have implemented StreamQL as a Java library, and we have compared
its performance against three popular streaming engines (RxJava, Reactor, and Siddhi) using four
benchmarks. In benchmark with realistic workloads, the throughput of the StreamQL library is
consistently higher: 1.1ś10 times higher than RxJava, 1.2ś20 times higher than Reactor, and 5ś100
times higher than Siddhi. We have used StreamQL to easily prototype a streaming algorithm for
ABP (Arterial Blood Pressure) pulse detection, a complex computation that is difficult to express in
other streaming languages.
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