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ABSTRACT
Genome analysis is a critical tool in medical and bioscience re-

search, clinical diagnostics and treatment, and disease control and

prevention. Seed and extension-based alignment is the main ap-

proach in the genome analysis pipeline, and BWA-MEM2, a widely

acknowledged tool for genome alignment, performs seeding by

searching for super maximal exact match (SMEM). The compu-

tation of SMEM searching requires high memory bandwidth and

energy consumption, which becomes the main performance bottle-

neck in BWA-MEM2. State-of-the-Art designs like ERT and GenAx

have achieved impressive speed-ups of SMEM-based genome align-

ment. However, they are constrained by frequent DRAM fetches or

computationally intensive intersection calculations for all possible

k-mers at every read position.

We present a CAM-based SMEM seeding accelerator for genome

alignment (CASA), which circumvents the major throughput and
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power bottlenecks brought by data fetches and frequent position

intersections through the co-design of a novel CAM-based comput-

ing architecture and a new SMEM search algorithm. CASA mainly

consists of a pre-seeding filter table and a SMEM computing unit.

The former expands the k-mer size to 19 using limited on-chip

memory, which enables the efficient filtration of non-SMEM pivots.

The latter applies a new algorithm to filter out disposable SMEMs

that are already contained in other SMEMs. We evaluated a 28nm

CASA implementation using the human and mouse genome ref-

erences. CASA achieves 1.2× and 5.47× throughput improvement

over ERT and GenAx while only requiring less than 30GB/s DRAM

bandwidth and keeping the same alignment results as BWA-MEM2.

Moreover, CASA provides 2.57× and 6.69× higher energy efficiency

than ERT and GenAx.
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1 INTRODUCTION
Gene sequence analysis is of paramount importance as it provides

vital insights into the underlying genetic mechanisms of life. The

rapid development of gene sequencers and sequencing algorithms

leads to a significant reduction in monetary and time costs [25, 52].

However, the sequencing data derived from the sequencer is mas-

sive and typically broken into billions of fragments known as reads,

ranging from around 35 bp (base pairs) to 250 bp short reads in

SRS (short-read sequencing technologies) [8, 15, 65] and more than

1Kbp long reads using LRS (long-read sequencing technologies),

such as ONT [41, 43, 58] and PacBio [44, 57]. Such massive sequenc-

ing data generation, in turn, brings the demand for high-speed and

real-time genomics analysis.

In genome analysis [18, 60], one common task is to align reads

against a long sequence of DNA known as a reference, which con-

sists of billions of nucleotides or so-called bases (A, G, T, and C,

encoded using 2-bit). Such a long reference sequence makes tra-

ditional substring lookup algorithms (e.g., Boyer-Moore (BM) [4]

and Knuth-Morris-Pratt (KMP) [32]) extremely slow. Meanwhile,

genetic mutations, variations, and sequencing errors make the align-

ment more complicated, known as approximate string matching

(ASM) [10, 20, 24, 49, 50, 54, 55, 59, 62, 70]. Consequently, new al-

gorithms have been developed for identifying the position of a read

within the reference, including BWA-MEM [38, 66] for short reads

alignment and Minimap [39, 40] for long reads. This work focuses

on short read processing as the Illumina short read sequencing

machine [25] remains the predominant solution in the field today.

Seed and seed extension is the mainstream read alignment meth-

od [36–38]. During the seeding phase, the aligner first looks up the

potential matching positions of a read in the reference by finding

exact matches of small substrings with a size k, called seeds or

k-mer. Then in the extension phase, the aligner performs the ASM

process on all reference hits found in the seeding phase and outputs

the reference hits with the best alignment score [59] or the least

errors [50].

A popular heuristic employed in the widely adopted BWA-MEM

[12, 37, 38] seeding is based on super-maximal exactmatches (SMEM).

The SMEMs with a size equal to or greater than a certain number,

𝑙 , are reported as seeds. Intuitively, larger 𝑙 values result in fewer

candidate positions. Therefore, in practice, a small value of 𝑙 leads

to an excessive number of hits for later processing, while a large 𝑙

may lead to inaccurate alignments. BWA-MEM2 empirically sets

𝑙 = 19 as a good trade-off between performance and accuracy.

In software implementations of SMEM seeding, the FM-index [35,

37] requires a one-base-at-a-time lookup, leading to frequent, ir-

regular, and unpredictable memory access to DRAM. This results

in limited performance and high energy consumption on CPUs

and GPUs [6, 7]. The learned index LISA and BWA-MEME [21, 27]

offer higher speed [6] by reducing memory access and offering

multi-stride search, but their index tables exceed 100GB in size.

Custom SMEM seeding accelerators have gained significant in-

terest and have shown significant performance and power improve-

ment over software implementations. State-of-the-art (SOTA) ac-

celerators employ various methods to enhance data locality and

reduce memory access. GenAx [16] and GenCache [51] explore

seed & position tables for better data locality, which reduces off-

chip DRAM access and optimizes on-chip SRAM access and data

movement. ERT [61] explores algorithmic optimization of index

table data structures to use off-chip DRAM as the main memory

but with reduced accesses. All prior accelerators opt to look up a

k-mer that is smaller than the threshold 𝑙 = 19 in their index table

and then extend this k-mer into a SMEM. The k-mer size is limited

due to the exponential growth of the index table as the k-mer size

increases, leading to the processing of numerous positions that do

not result in any SMEMs. This, consequently, causes redundant

SMEM computation.

Here, we propose a Content Addressable Memory (CAM) based

Seeding Accelerator, CASA, for accelerating SMEM seeding. CASA

stores the reference genome in the CAM and enables the detection

of SMEMs by matching k-mers on the read to the reference in CAM.

CAMs, typically used for string matching, are broadly used in ge-

nomics analysis [3, 19, 22, 30, 34, 46, 67, 71, 72]. Prior ReCAM-based

seeding accelerators such as GenPIP [46] and SaVI [34] provide im-

pressive speedup against CPU. However, they require large on-chip

ReRAM, which is incompatible with the CMOS technology. Mean-

while, prior CAM-based seeding accelerators use a naive strategy

that matches k-mers against all the CAM entries which store the

reference. Such an approach is energy-expensive.

To reduce the energy consumption and maintain high through-

put for SMEM seeding with limited on-chip capacity, we propose a

tightly coupled co-design of filter-enabled SMEM seeding algorithm

and architectural design to (1) filter out k-mers which the current

reference part does not contain, (2) increase k-mer size to 19 for

higher k-mer filter rate with a low area overhead while still keep-

ing 𝑘 less than the minimum SMEM length to maintain accuracy,

(3) predict and filter out pivots on the read that will not lead to

SMEMs, (4) fully utilize the CAM parallelism with low demand for

DRAM bandwidth, and (5) selectively enable CAM entries when

performing the SMEM computing to save energy.

In summary, this paper makes the following contributions:

• We propose CASA, an energy-efficient and high-speed CAM-

based SMEM seeding accelerator. CASA replaces the index

table fetches by performing multi-stride matches in CAMs.

Through holistically optimized architecture and algorithm

designs, CASA improves the throughput and energy effi-

ciency while only increasing 33.9% area consumption com-

pared to GenAx.

• We propose a cache-like, 3-stage pre-seeding filter to discard

non-existent k-mers. This table allows scaling up the k-mer

size by linearly increasing memory capacity while SOTA

requires exponential memory increase. Thus, CASA supports

19-mer with no memory increase compared to the 12-mer

seed & position table in GenAx, but much higher filter rate

for better performance and efficiency. In our experiments,

for 1MB references, CASA needs a 45MB pre-seeding filter

table of 19-mer, while the index table for GenAx, GenCache,

or ERT will require at least 800GB memory.
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• We propose a filter-enabled SMEM seeding algorithm that

leverages the information from our pre-seeding filter. This al-

gorithm efficiently detects pivots on the read that cannot lead

to a SMEM. By discarding these pivots during SMEM detec-

tion, this algorithm provides a 10× acceleration in through-

put for GRCh38.

• CASA is rigorously evaluated in the 28 nm CMOS process

on the GRCh38 human genome assembly with 787,265,109

Illumina Platinum Genomes 101 bp single-ended reads and

GRChm39 mouse genome assembly with simulated reads.

While only using 55MB on-chip memory, CASA achieves

17.26×, 1.2×, and 5.47× higher seeding throughput than

BWA-MEM2, ERT, and GenAx, and CASA provides 2.57×
and 6.69× higher energy efficiency than ERT and GenAx.

2 BACKGROUND
2.1 Seeding by Searching for SMEMs
As an important step in read alignment, Seeding computes a set of

candidate positions (hits) in the reference genome where a read

may potentially align. BWA-MEM2 [37, 38, 66] is a state-of-the-art

read aligner that is broadly used as part of the Broad Institute’s best

practices genomics pipeline [18]. BWA-MEM2 also uses seeding

to find candidate positions for potential alignment. The seeding

algorithm in BWA-MEM2 is based on the identification of substrings

in the read that have super-maximal exact matches (SMEMs) with

the reference genome. Amaximal exact match (MEM) is a substring

in the read that exactly matches a substring in the reference genome

such that it cannot be extended by adding new bases in either

direction. A SMEM is a MEM that is not fully contained in any

other MEM.

In general, there are two ways to search for SMEMs. The first

way is to extend exact matches in the read in both directions, which

we call bi-directional search, and the second way is to always extend
exact matches to the right, which we call uni-directional search.

Bi-directional search is used in BWA-MEM2 [38, 66] and [61].

As shown in Figure 1(a), it starts from one position in the read

(pivot) and first searches for exact matches on the right of the pivot

until a mismatch (i.e., forward search). The mismatch position in

the read will become the next pivot. During such a forward search,

all the positions in the read where there is a change in the number

of hits will be recorded as left extension points (LEPs). Starting from
each recorded LEP, the bi-directional search will look for the longest

exact matches on the left of the pivot (i.e., backward search). After
the backward search, the bi-directional search will detect all MEMs

in a read. SMEMs, therefore, can be identified by discarding MEMs

fully contained in other longer MEMs.

Uni-directional search is used inGenAx [16] andGenCache [51].

As shown in Figure 1(b), for each base (pivot) in the read, this ap-

proach searches for a right maximal exact match (RMEM) with

a minimum length (E.g., 19 in BWA-MEM). After all RMEMs are

detected, SMEMs can be identified by discarding RMEMs contained

in other RMEMs.

Reference

Read

Pivot

MEM1
MEM2

MEM3

LEP1 LEP2 LEP3

Hit Hit

Forward Search
Backword Search

MEM1 and MEM3 are SMEMs.

MEM2 is not a SMEM since it is 

fully contained in MEM3.(a)

Reference

Read

Pivot1

RMEM1

RMEM2
RMEM3

Hit Hit

Forward Search

RMEM1 and RMEM3 are SMEMs.

RMEM2 is not since it is fully 

contained in RMEM1.(b)

Pivot2 Pivot3

Figure 1: (a) Bi-directional and (b) uni-directional search for
SMEM seeding
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Figure 2: Example of FM-index-based seeding
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ERT
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Reference
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MEM1
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Hit Hit

Forward Search
Backword Search

MEM1 and MEM3 are SMEMs.

MEM2 is not a SMEM since it is 

fully contained in MEM3.(a)

Reference

Read
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RMEM1

RMEM2
RMEM3

Hit Hit

Forward Search

RMEM1 and RMEM3 are SMEMs.

RMEM2 is not since it is fully 

contained in RMEM1.(b)

Pivot2 Pivot3

… 

Figure 3: (a) ERT-index (b) Seed & Position tables

2.2 Data Structures for SMEM Seeding and
Hardware Limitation

To identify SMEMs and their corresponding hits on the reference,

prior works use different data structures to support the lookup of a

string on the reference genome. Table 1 summarizes the pros and

cons of each data structure.

FM-index. The FM-index structure is widely used in aligners and

metagenomics classification tools such as Bowtie, BWA-MEM, and

Centrifuge [28, 36–38]. As shown in Figure 2, the FM-index consists

of (1) a suffix array (SA) that contains the locations of lexicographi-

cally sorted suffixes of the reference genome ($ is inserted as the

smallest character), (2) a Burrows-Wheeler Transform (BWT) that is

the last column of the cyclically sorted suffix array of the reference,

(3) a count table (C) that contains the number of characters lexico-

graphically smaller than a given character, (4) an occurrence table
(Occ) that stores the number of occurrences of a given character

prior to a certain index in the suffix array. One can calculate the

position interval (𝑠 and 𝑒) of a specific query using C and Occ as

shown in the right side of Fig 2. The FM-index allows the lookup of a
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string of length 𝑛 in a reference genome using approximately 𝑂 (𝑛)
memory operations. The FM-index inherently involves sequential

dependent memory accesses, which hampers its performance in

terms of both bandwidth utilization and throughput.

ERT-index. The Enumerated-Radix-Trees (ERT) index is proposed
in [61], and it is adopted in one of the latest versions of BWA-

MEM2 [5], whose FPGA implementation outperforms the original

72-thread CPU-version BWA-MEM2 by 3.5×. As shown in Fig-

ure 3(a), the ERT-index consists of an index table whose indexes

are k-mers and values are pointers to the root of a radix tree. In the

lookup of SMEMs, the index table is accessed by a k-mer on the

read, and the root of a radix tree is fetched if the k-mer leads to a

hit on the reference. To find SMEMs, one can perform a forward

search by expanding the k-mer, followed by a backward search,

where k-mers can be expanded by comparing the subsequent letters

after the k-mer on the read to the letters inside the tree nodes. The

ERT-index has better space locality and provides speedup compared

with FM-index since it uses k-mers as indexes and supports quick

forward search by expanding k-mers with radix trees. The memory

footprint of the ERT-index is𝑂 (4𝑘 +𝑛), where 𝑘 is the size of k-mer,

and 𝑛 is the length of the reference. When 𝑘 is large, a substantial

amount of memory is required.

The ERT accelerator [61] uses the bi-directional approach and

the ERT index to identify SMEMs and has improved the data effi-

ciency significantly compared to FM-index. However, to support

a 15-mer index table, it demands high DRAM capacity and, there-

fore, has high power consumption. For example, the size of the

dedicated memory required by the ERT-index is 62.1GB [64]. We

have evaluated the 64GB DDR4 power consumption of the ERT

accelerator for seeding computation using DRAMpower [9]. We

observed the power consumption of DDR4 is higher than 15W,

which occupies about 47% of the power usage in ASIC-ERT. More-

over, it still has some random accesses left caused by tree root

fetches and k-mer searches. Thus, the DRAM bandwidth utilization

remains a throughput bottleneck in ERT. We have evaluated the

bandwidth utilization of the ERT accelerator using Ramulator [31]

with 1M reads randomly selected from ERR194147_1.fastq[14] that

contain about 80% exact matches on GRCh38 [64]. We observed

that only about 50 % DDR4 bandwidth on average is utilized, which

is consistent with the result reported in [61].

Seed & Position Tables. Prior works like Darwin [63] and GenAx

[16] provide a data structure that contains both seed and position

tables for SMEM searching. As shown in Figure 3(b), the seed table

is indexed by k-mers, and each of its entries points to a set of hits

recorded in the position table. Such a data structure enables the

efficient lookup of the hits of 𝑘-mers in the aforementioned uni-

directional approach, which accelerates the computation of RMEMs.

To illustrate, to compute RMEM for a pivot 𝑥 on the read, we can

determine the hits (𝐻1) for the first k-mer starting from the pivot by

the lookup of seed & position tables. Then, we can stride by 𝑘 and

find the hits (𝐻2) for a k-mer starting at 𝑥 + 𝑘 position in the read.

By intersecting𝐻1 and𝐻2, we find the hits (𝐻1∩𝐻2) for the 2k-mer

after the pivot. We can continue this process until the intersection

returns an empty set. Then, we reduce the stride progressively from

𝑘/2, 𝑘/4, 𝑘/8, ..., 1, which effectively is a binary search, to compute

the RMEM with non-zero hits. This data structure with seed &

Table 1: Pros and Cons of Data Structures Used for Seeding

FM-index Pros: low memory cost.

Cons: low throughput and low bandwidth uti-

lization.

ERT-index Pros: high throughput.

Cons: high memory cost with large k-mer.

Seed &

Position

Tables

Pros: high throughput, easy-to-implement al-

gorithm.

Cons: high memory cost with large k-mer.

position tables provides a better locality compared to FM-index.

However, it also has a large memory footprint 𝑂 (4𝑘 + 𝑛), where 𝑘
is the size of 𝑘-mer, and 𝑛 is the length of the reference.

GenAx [16] chooses an on-chip implemented seed & position

table and performs a unidirectional RMEM search, which features

128 seeding lanes to query 128 k-mers simultaneously. Although the

on-chip seed table can reduce the DRAM usage and thus lower the

DRAM power, the large number of pivots to start the unidirectional

RMEM search incur massive k-mer fetches and k-mer intersections,

becoming the major performance bottleneck in GenAx. We ob-

served that there exist ∼4000 position intersections and ≥200 index
fetches per read per segment. These k-mer fetches and intersections

in one pivot show low parallelism since the binary search of RMEM

requires the hardware controller to know the next k-mer to search.

Moreover, SRAM conflicts restrict the number of seeding lanes,

further limiting GenAx’s performance. To make things worse, the

same batch of reads should conduct such an expensive process re-

peatedly 512 times in the human genome due to the limited on-chip

memory.

GenCache [51] refines the design of GenAx, introducing a fast

seeding mechanism to handle reads with low errors, effectively

bypassing SMEM seeding for these reads. However, GenCache

employs the same SMEM computing algorithm as GenAx, which

requires considerable k-mer fetches and intersections per read, con-

tinuing to bottleneck the overall pipeline. Additionally, GenCache

opts for a multi-bank cache to store the index table instead of on-

chip storage, triggering extensive DRAM fetches and significantly

diminishing the overall SMEM seeding performance.

2.3 Binary CAM (BCAM)
Figure 4(a) shows a conceptual view of a BCAM array. Once the

search data match the stored data in the memory, a logic ‘1’ will be

generated at the corresponding row. As shown by the 10-transistor

NOR-type BCAM cell [53] in Figure 4(b), two pull-down paths from

the match line (ML) to ground formed by M1 to M4 implement a

logical XNOR between the input search data on the differential

search line (SL1/SL2) and the differential storage data (D1/D2) in the

6-transistor SRAM cell (bitlines, wordlines and access transistors

are omitted for simplicity). Amismatch betweenD1/D2 and SL1/SL2

will pull down the pre-charged ML through one of the NMOS pairs,

while a match will break both pull-down paths. When multiple cells

are connected to a single ML to form a CAM word, all pull-down

paths are effectively performing logical NOR operations. The ML

remains pre-charged voltage (i.e. logic ‘1’) only when all cells are

in the matched state.
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Figure 5: The number of k-mers that lead to hits on the ref-
erence genome scaling with the size of the k-mer

3 DESIGN PRINCIPLES OF CASA
SOTA seeding algorithms require SMEM lengths to exceed a certain

number (e.g., 19 in BWA-MEM2 [37]), and only pivots that are

starting positions of k-mers, which cause hits on the reference, can

potentially be starting positions of SMEMs. We observe that as

the k-mer size increases, the number of k-mers on the read that

have a hit on the reference genome declines sharply. As depicted in

Figure 5, increasing k from 12 to 19 results in a 6.04-fold decrease

in the number of k-mers that leads to a hit on a reference genome

partition. The design of CASA is inspired by this observation and is

tailored to efficiently fetch large k-mers from the index table. This

enables CASA to filter out many pivots, preventing unnecessary

SMEM computation and accelerating seeding computation.

Besides, prior works like ERT perform the matching of k-mers

by storing the reference into index tables, which requires a memory

footprint of size 𝑂 (4𝑘 + 𝑛) and pays a lot for increasing k-mer size,

leading to high DRAM power.

Given that CAM naturally supports large string matching with

only 𝑂 (𝑛) space as shown in GenPIP [46], CAM is a superior al-

ternative to RAM-based index tables [27, 61]. CAM can serve as

the SMEM computing unit by storing the reference and comparing

consecutive k-stride bases directly within itself. This approach mit-

igates the substantial capacity and bandwidth demands of DRAM

while preserving rapid SMEM search. We call the CAM used to

store the reference in CASA as the SMEM computing CAM .

The straightforward method to apply CAM to store the reference

and perform SMEM search is using overlapped sub-strings sliding

by one base without any index table (see Figure 6(b)). However,

this naive approach faces three major limitations: (1) It requires

performing intensive SMEM computation for each pivot on the

read, which easily becomes the energy and throughput bottleneck.

For example, in Figure 6(b), the naive algorithm will perform the

SMEM searching on all 10 pivots on the read even though only one

pivot will be detected as the start index of a SMEM (i.e., index 3 on

the read). (2) It duplicates reference segments and hence increases

the on-chip memory usage by 𝑘 times. (3) Matching k-stride bases

against all the CAM entries is power-hungry. To enable efficient

SMEM computation, CASA not only builds a CAM-based index

table supporting large k-mers but also introduces a novel filtering

mechanism that can efficiently predict and discard pivots that will

not lead to a SMEM. In addition, CASA stores the reference in CAM

as non-overlapped sub-strings to reduce memory usage and enable

multi-stride SMEM search. Finally, CASA proposes an efficient

grouping strategy that partitions CAM entries into groups. CASA

will only activate the group such that a k-mer is found inside its

CAM entries to reduce the energy cost of seeding.

Filtering. CASA implements a novel filter-enabled SMEM search

algorithm that can detect pivots that cannot lead to a SMEM and

directly skip the computation of SMEMs for those pivots. This algo-

rithm, utilizing a CAM-based pre-seeding filter that can determine

whether a k-mer exists in the reference, is able to filter out 99.9%

of the pivots on the read, which allows CASA to massive reduce

the energy and time cost of computing SMEMs. We will present

the design of our pre-seeding filter in § 4.1, and we will explain the

details of this algorithm in § 4.2.

Non-overlapped Storage. CASA stores the reference in the CAM

in a non-overlapped manner, which is inspired by the equivalence

between searching a query string on 𝑘 multi-stride automata and

searching 𝑘 query strings on a single automata. For example, Fig-

ure 7(a) shows a single-stride automaton that is used to match query

CAAT to reference TCAAT, where out edges of the start state indicate
each base on the reference may be the start of the query. Figure 7(b)

shows 2-stride automata used to match CAAT with TCAAT, where
each state contains a 2-mer for matching a 2-base subsequence

inside the query. To ensure accuracy, we need to construct two

automata, on both of which the query CAAT will be executed. The
automaton on the top of Figure 7(b) reports no match, yet the

automaton on the bottom reports a match. Figure 7(c) shows the

matching between CAAT and TCAAT based on searching two queries

on a single 2-stride automaton, which is equivalent to the com-

putation as shown in Figure 7(b). Instead of using two automata,

we will match two queries CAAT and XCAAT to TCAAT, where X is a
padded base that can match any base. In Figure 7(c), CAAT cannot
be matched by the automaton, yet XCAAT leads to a match. In the

same spirit, when CASA searches a k-mer 𝑢 in CAM, instead of

storing the overlapped reference in CAM (like using 𝑘 multi-stride

automata), CASA stores the reference in CAM in a non-overlapped

manner and creates 𝑘 queries 𝑢, X𝑢, XX𝑢, ..., and 𝑣𝑢 to match the

reference, where 𝑣 is X repeated for 𝑘 − 1 times. This mechanism

will reduce the throughput of CASA since more queries need to be

processed, yet it will lower the memory usage of CASA since the

reference is stored only once. As not all padding patterns match

the reference for a k-mer, CASA stores how many bases to pad

for a k-mer (so-called start positions) to reduce the padded queries.

Meanwhile, our filtering algorithm discards a lot of pivots that have

no SMEM. Therefore, the reduction of throughput is mitigated, and

the energy efficiency of CASA can be massively enhanced.

CAM Grouping. Naive CAM implementations typically match

k-stride in the whole CAM arrays, which causes excessive energy

overhead. CASA proposes a group-level SMEM computing CAM

management strategy to reduce such overhead. CASA pre-computes
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the group indicator offline, which is a bit vector used to indicate

which CAM group contains the k-mer so that irrelevant groups can

stay idle. Moreover, CASA uses search indicator to represent a tuple
that combines the start position and the group indicator of a k-mer.

Working Example. Figure 6(c) presents an example of the whole

SMEM computation in CASA. In the beginning, all read positions

are viewed as pivots, and we access the pre-seeding filter table to

obtain search indicators for 3-mers of all pivots. CASA then discards

the unexisting 3-mers, which have no start position like AGT. The
remaining is sent to the SMEM computing CAMs and the first

matching 3-mer is TCA in SMEM computing phase. In this example,

TCA starts at the second base inside the CAM entry, from which

we know the query is padded with one X. CASA then performs

a consecutive 3-stride search until a mismatch is met. Moreover,

CASA will perform a binary search for the first mismatched 3-

mer to acquire the exact end position of the SMEM. Finally, CASA

compares the newly computed SMEM with the previous SMEMs

to check whether to discard it. If the answer is no, the location of

hits and the SMEM will be sent to the result buffer. Then CASA

updates the candidate pivots using the new SMEM by performing

the proposed filtering algorithm. Such a process will be iterated for

the remaining pivots.

4 CASA DESIGN
Overall, implementing a SMEM seeding accelerator presents two

major challenges. The first is the massive number of read positions

initiating the SMEM computation, as mentioned in §2.2, which

dominates GenAx’s running time. The second is mitigating the

energy demands of DRAM, which occupies nearly half of the total

power consumption in ERT.

CASA reduces DRAM usage by directly storing the reference

into CAMs instead of a DRAM-based index table and further pro-

hibits the CAM from the naive power-hungry search strategy by

selectively disabling match lines and readout circuits. Moreover,

CASA introduces a pre-seeding filter table and a filter algorithm to

avoid the enormous SMEM computing process.

4.1 Architectural Improvement
Energy-efficient SMEM Computing CAMs. The SMEM comput-

ing CAMs, storing the reference part by multi-stride, accomplish

the search process of the unidirectional RMEM search algorithm.

They receive the pivots and search indicators from the pre-filter

table. Then they identify which pivots to start a search and how

many bases should be padded into the sub-strings of these pivots.

After padding, they find matches stride by stride until they meet

mismatches. At the end of the stride search, a binary search will

be performed on the first mismatched entries to obtain the end

of SMEM. A secondary pivot filtering algorithm is performed us-

ing the search indicators and the new SMEM. And a new SMEM

computing starts at the next pivot.

However, always enabling all SMEM computing CAM arrays to

perform searches consumes a large amount of dynamic power. Thus,

we propose power gating techniques among different CAM arrays

and within one CAM array. First, we only enable specific batches

of CAM arrays where the k-mer of one pivot exists while keeping

others on standby. Second, the entries within each CAM array are

selectively enabled based on the automata matching results in the

last cycle when performing amulti-stride search. For instance, when

CASA begins to search the SMEM of one pivot in the reference, in

the first cycle, we will enable all the entries to search a stride of

sub-string in the CAM groups that contain that pivot’s k-mer. Then,

for the next stride, only the CAM entries coming after the entries

which have been determined to contain the currently searched

stride are enabled. In implementing the coarse enabling, we cluster

computing CAM arrays into groups and use a one-hot bit vector

(termed group indicator) to indicate which group the k-mer belongs

to. The previous cycle’s match line results, stored in DFF, facilitate

the disabling in the CAM array level with a small overhead.

Pre-Seeding Filter. CASA provides a pre-seeding filter to generate

search indicators for k-mers and filter out pivots that have no

SMEM. We notice that when we split the reference into pieces, the

hit rate of the k-mer decreases dramatically, and the larger the k-

mer size is, the fewer hits we will find. For example, when GRCh38

is fragmented into 768 parts, the first part only contains 0.003% of

all possible 19-mers while it contains more than 80% of all possible

10-mers.

Previous studies like GenAx [16] and ERT [61] build an index

table to locate k-mers on the reference, whose memory footprint
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grows exponentially by 𝑘 , i.e., the size of the k-mer. However, di-

rectly using a k-mer CAM as GenPIP [46] did faces high power

brought by enabling the whole CAM entries. Inspired by the cache

architecture, we expand the tag and data arrays to a pre-seeding

filter to filter out pivots using the non-existing k-mers and ensure

no k-mer misses or false positives. It only stores existing k-mers

and the corresponding search indicators so that the memory usage

scales linearly with 𝑘 . Meanwhile, we add a small SRAM array

in front of the CAM tag array and use the start and end pointers

from the SRAM to power-gating the CAM array, which reduces the

power of the CAM array.

Figure 8 shows the structure of our pre-seeding filter, which

consists of three main components: (1) a mini index table for m-

mers with 4
𝑚

entries, where𝑚 is smaller than 𝑘 , (2) a tag array

implemented by CAM which stores the rest of (k-m)-mers with

𝑛 entries, where 𝑛 is the number of bases in the partition of the

reference sequence (e.g., 4M for a 1MB partition), and (3) a data

array that stores the search indicators with the same number of

entries as the tag array.

CASA builds themini index table and the tag table offline for each

reference partition using the following steps: (1) To begin with, for

each k-mer that starts at index 𝑥 in the partition, we will compute

its start positions in the CAM as 𝑥 mod 40 and the group indicator

as 𝑥 mod 20, where 40 is the stride length, and 20 is the number

of CAM groups. (2) We will then sort k-mers in lexicographical

order and split each k-mer into an m-mer and a (k-m)-mer. In our

design, we choose𝑚 = 10 for 𝑘 = 19 to roughly split the k-mer

half by half. As a certain number of k-mers will share the same

m-mer, each m-mer, which has been sorted in lexicographical order,

may correspond to a range of (k-m)-mer. In this case, we also store

the start and the end of such range inside the mini index table. (3)

Finally, for each (k-m)-mer, we will encode its search indicator into

a one-hot bit vector and assign it to each entry of the tag table.

As all k-mers contained in the reference partition are enumerated,

the proposed pre-seeding filter table avoids k-mer false positives or

misses, unlike the bloom filter in GenCache. Worth mentioning, we

observe that matching the (k-m)-mer in the whole tag array is still

power-hungry. To reduce this dynamic power, the start and end

pointers fetched from the mini-index table are decoded in a range

decoder to power-gating corresponding entries in the tag array.
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Figure 9: Timing diagram of pipelines in CASA.

The whole process of determining whether a 19-mer exists in the

reference is shown in Figure 8.Wewill first split the 19-mer into a 10-

mer and a 9-mer. We will use the 10-mer as the address to access the

mini-index table and fetch the start/end pointers to 9-mers stored

in the tag table that share the same 10-mer prefix. If the 9-mer split

from the 19-mer matches one of the entries between the pointers,

the 19-mer exists in the reference part, and the connected data array

row will be activated to fetch the 19-mer’s search indicator.

In summary, the proposed pre-seeding filter has the space com-

plexity of O(4
𝑚 + 𝑛), in which 𝑛 is the reference part size, 𝑚 is

the mini m-mer size which is much smaller than 𝑘 . Therefore, the

proposed pre-seeding filter eliminates the exponential dependence

on 𝑘 and replaces it with a fixed smaller𝑚. As mentioned before,

we empirically choose 𝑘 to be 19 and𝑚 to be 10. The total on-chip

memory usage of the pre-seeding filter is only 45MB to support

19-mer for 1MB reference. It is smaller than 66MB in GenAx for

1.5MB reference (scaled to 1MB reference, this will be 60MB),

which only supports 12-mer. Besides, the k size increase brings

significant throughput enhancement. According to our evaluation

in Figure 5, we find that increasing the k-mer size from 12 to 19

reduces the pivots per partition by 6.04×, leading to a cycle decrease
in the 19-mer case.

Overall Operating Pipeline. Our design consists of three stages

and executes them in the pipeline in read batch level: read fetch,

pre-seeding filter, and SMEM computing, as shown in Figure 9.

In the pre-seeding phase, three reads (together with the reverse

strands) are sent to the pre-seeding filter each time, and the reads

that have k-mers existing in the current reference part are then sent

to the 512-entry FIFO together with its pivots’ search indicators.

In the SMEM computing phase, the computing controller fetches

a read and its search indicators from the FIFO and begins SMEM

computing. CASA implements a multi-banking pre-seeding filter

like GenAx, where multiple reads and searches can occur with high

parallelism. Therefore, the pre-seeding phase is typically faster than

the SMEM computing phase. Nevertheless, there exist cases where

the latency of the SMEM computation cannot hide the latency of the

pre-seeding filtering. Such cases typically occur when we process

the first read batch in the SMEM computation where no pivot has

k-mer existed in the pre-seeding filter. As FIFO allows read and

write in parallel, CASA can overlap the pre-seeding filter phase

and the SMEM computing phase for the same read batch to better

conceal the latency of the pre-seeding filter phase in such cases.
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Therefore, the throughput of CASA is mainly determined by the

SMEM computing stage.

Since the proposed pre-seeding filter consists of three hardware

components and the pre-seeding controller takes time to schedule

multi-bank accesses and selectively enable tag array, we design a

sub-pipeline within the pre-seeding phase in read level, which has

five stages as illustrated in the bottom of Figure 9. The first and

third stage schedule the multi-bank accesses to the mini index table

and tag array. The other three stages are used to access the mini

index table, tag array, and data array, respectively. Moreover, we

realize another sub-pipeline in the SMEM computing phase which

consists of two stages (Figure 9), the computing controller phase

and the CAM matching phase. Because the computing controller

decides how many bases we should match in the binary search

based on the last cycle’s match results, we design this to process

two reads in parallel and break down the critical path.

4.2 Algorithm for filtering out pivots
We use a pre-seeding filter table to store k-mers that exist in the

reference genome. In the uni-directional search of RMEMs, we can

discard a lot of pivots on the read if the k-mer that starts on the

pivot is not stored in the pre-seeding filter table. We will compute

RMEMs for the rest of the pivots. Some RMEMs are completely

contained in other longer RMEMs, which we call disposable RMEMs
since they will be further discarded in the identification of SMEMs.

In practice, if we know which pivot on the read may lead to a

disposable RMEM, which we call disposable pivot, before computing

the RMEM, we can filter out this pivot before seeding and thereby

improve the performance.

Let us consider a SMEM 𝑟 that starts at pivot 𝑥 and ends at index

𝑦 on the read (i.e., the length of 𝑟 is𝑦−𝑥 +1). In this case, the closest

k-mer on the right side of 𝑟 should start at index 𝑦−𝑘 +2 and end at
𝑦 + 1, which we call the closest right k-mer (CR𝑘M) of 𝑟 . In example

1 of Figure 10, for a SMEM CATTGTCA on the read (i.e., 𝑥 = 3, 𝑦 = 10

since we consider the index starts at 1), the closest right 4-mer

(CR4M) of this SMEM is TCAT. We can determine whether a pivot 𝑧

indexed on the right of 𝑥 (i.e., 𝑧 > 𝑥) is disposable by performing

Analysis1 that checks whether 𝑟 is non-extendable and Analysis2
that checks whether the k-mer starts at 𝑧 is unaligned with the

CR𝑘M of 𝑟 .

We say 𝑟 is non-extendable if we cannot find a hit for the CR𝑘M

of 𝑟 on the reference. If this is the case, no string on the read that

covers the CR𝑘M of 𝑟 can be found on the reference genome, which

indicates no pivot between the start index of 𝑟 (i.e., 𝑥 ) and the start

index of the CR𝑘M (i.e., 𝑦 − 𝑘 + 2) can lead to a RMEM that is not

fully covered by 𝑟 . Therefore, pivots 𝑥 + 1, 𝑥 + 2, ..., 𝑦 − 𝑘 + 2 are

disposable, and 𝑦−𝑘 +1 will be set as the next pivot for later SMEM

searching. In example 1 shown in Figure 10, if the CR4M TCAT of
the SMEM cannot be fetched from the pre-seeding filter table (i.e.,

it has no hit on the reference), we can skip pivots indexed from 3

to 8 (i.e., CATTGT) and set the next pivot as 9 (i.e., C).
If 𝑟 is extendable, we can apply the second analysis to further

determine whether a pivot 𝑧 between the head of 𝑟 and the head of

the CR𝑘M of 𝑟 is disposable. In this analysis, we will check whether

the k-mer that starts at pivot 𝑧 is unaligned with the CR𝑘M of 𝑟 .

We consider this k-mer has a set of hits {(𝑎1, 𝑎1 + 𝑘 − 1), (𝑎2, 𝑎2 +

Algorithm 1 Filter-enabled SMEM computing algorithm

Input: A set of pivots {𝑥0, 𝑥1, ..., 𝑥𝑛 } on a read

Output: SMEM set 𝑆 = {𝑠0, 𝑠1, ..., 𝑠𝑚 } and their hit set 𝐻 =

{ℎ0, ℎ1, ..., ℎ𝑚 } in the reference

1: procedure CR𝑘M_Check(last_smem, k)
2: // Check whether the closest right k-mer of last_smem exists. Re-

turn 1 if it exists, otherwise 0.

3: end procedure
4: procedure Align_Check(last_smem, pivot, k)
5: // Check whether the k-mer on pivot is aligned with the CR𝑘M of

last_smem in CAM. Return 1 if aligned, otherwise 0.

6: end procedure
7: procedure RMEM_Search(pivot)
8: // Start a uni-direction RMEM search at pivot. Return a RMEM and

its hits on the reference if found, otherwise null.
9: end procedure
10: procedure OVERLAP_Check(last_smem, rmem)
11: // Check whether last_smem fully contains rmem. Return 1 if it is

the case, otherwise 0.

12: end procedure
13: Initialize last_smem as null, k as k0, and ;

14: for each pivot on read do
15: if last_smem = null then
16: 𝑠, ℎ = RMEM_SEARCH(pivot) ;
17: last_smem = 𝑠 ;

18: Add 𝑠 and ℎ into 𝑆 and 𝐻 ;

19: else if CR𝑘M_CHECK(last_smem, k) = 0 && pivot <

last_smem.tail − k + 3 then
20: // Discard this pivot
21: Continue;

22: else if ALIGN_CHECK(last_smem, pivot, k) = 0 then
23: // Discard this pivot
24: Continue;

25: else
26: 𝑠, ℎ = RMEM_SEARCH(pivot) ;
27: if OVERLAP_CHECK(last_smem, 𝑠 ) = 0 then
28: last_smem = 𝑠 ;

29: Add 𝑠 and ℎ into 𝑆 and 𝐻 ;

30: end if
31: end if
32: end for

𝑘 − 1), ...}, where 𝑎𝑖 corresponds to the starting index of the hit on

the reference genome. We also consider the CR𝑘M of 𝑟 has a set of

hits {(𝑏1, 𝑏1 + 𝑘 − 1), (𝑏2, 𝑏2 + 𝑘 − 1), ...}, where 𝑏𝑖 is the starting
index of the hit. We say the k-mer that starts at 𝑧 is unaligned with

the CR𝑘M of 𝑟 iff the distance between the heads of their hits is

always not the same as their heads on the read, i.e., |𝑏 𝑗 − 𝑎𝑖 | ≠
(𝑦 −𝑘 + 2) − 𝑧 for all 𝑖, 𝑗 . If they are not aligned, there is no way we

can extend a RMEM from 𝑧 that is not fully covered by 𝑟 , i.e., pivot

𝑧 is disposable. However, computing the starting indexes of hits

(i.e., 𝑎𝑖 and 𝑏𝑖 ) for a k-mer is expensive, since in the seed&position

table, one needs to compare all the positions of two k-mers. Our

CAM-based architecture allows us to efficiently estimate whether

these two k-mers are unaligned by only performing a shifted-AND

on search indicators and one padded search. Suppose the size of

each CAM entry is 𝑠 , a necessary but not sufficient condition for

|𝑏 𝑗 −𝑎𝑖 | ≠ (𝑦−𝑘 +2) −𝑧 is |𝑏 𝑗 −𝑎𝑖 | mod 𝑠 ≠ ((𝑦−𝑘 +2) −𝑧) mod 𝑠 .

Therefore, by checking the starting indexes of hits in the CAM
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entry (i.e., 𝑏 𝑗 mod 𝑠 and 𝑎𝑖 mod 𝑠), we can determine whether two

k-mers are unaligned. In example 2 of Figure 10, we assume that

the CR4M TCAT is not found on the pre-seeding filter table. In this

case, the second analysis is triggered to determine whether pivots 4,

5, 6, 7, and 8 are disposable. In our example, we consider the second

analysis on pivot 4 (i.e., 𝑧 = 4) to check whether it is aligned with

the CR4M TCAT in CAM. Suppose each CAM entry is of size 5 and

the start index in each entry is 1, we will first fetch the starting

index of TCAT in the CAM entry which returns 4.Wewill then check

the starting index of 4-mer starts at 𝑧 (i.e., ATTG) in the CAM entry,

which returns 4. As ATTG (resp., TCAT) has only one hit in CAM,

we know the distance between the heads of their hits (denoted

by 𝑑ℎ) satisfies 𝑑ℎ mod 5 = 0, where 5 is the size of each CAM

entry. The distance between ATTG and TCAT on the read is 4 (i.e.,

8 − 4). If we use 𝑑𝑟 to denote this distance, we have 𝑑𝑟 mod 5 = 4.

As 𝑑𝑟 mod 5 ≠ 𝑑ℎ mod 5, we know ATTG is unaligned with TCAT.
Therefore, we can discard pivot 4.

Notice here we may overapproximate some unaligned k-mers

as aligned. This overapproximation will not affect the accuracy

of our SMEM computation because, at the end of operations, we

will always discard the RMEM that is fully contained in a previous

SMEM to avoid false positives.

Algorithm 1 shows the pseudo-code of our SMEM seeding algo-

rithmwith the pre-seeding filter, and the left side of Figure 10 shows

the flowchart of the program for processing a single pivot. For the

first pivot on the read, our algorithmwill perform the RMEM search

(i.e., RMEM_SEARCH(pivot)) to find the first SMEM. Then, the

algorithm will check whether the SMEM is non-extendable and try

to discard pivots. If the SMEM is extendable, we will check whether

the k-mer on the pivot is aligned with the CR𝑘M of the last SMEM,

and we will discard the pivot if it is unaligned. Finally, as shown

from line 27 to 29 in Algorithm 1, we will always discard RMEMs

fully contained in the last SMEM.

4.3 Pre-Processing of Exact Match Reads
GenStore [45] and GenCache [51] have shown that, when the er-

ror rate is low, filtering out reads that exactly match the reference

and only computing SMEMs for the remaining reads can speed

up the seeding process. This technique aligns with CASA’s focus

on SMEM computing acceleration, a design orthogonal to Gen-

Store and GenCache. We adopted a two-step approach to compute

SMEMs, integrating CASA with pre-processing of exact matches.

First, we identify exact match reads for all reference parts like Gen-

Cache. Next, we perform the SMEM finding operation for the rest
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Figure 11: Overview of CASA abstraction.

of the reads. To search for the exact match reads, CASA first gathers

the search indicators of several non-overlapping m-mers (m is the

size of a mini index entry). Then, CASA attempts to align all these

m-mers using the same method as §4.2. If these m-mers can be

aligned, CASA will match the whole read in the reference. The

exact match process for one read will be aborted whenever finding

unaligned m-mers or mismatches.

5 SYSTEM IMPLEMENTATION
Figure 11 outlines the design of CASA. When reads are scheduled

for access to the pre-seeding filter table, which consists of the mini

index, tag array, and data array, some are discarded because they

have no hit in the current reference. Each of the 10 SMEM comput-

ing CAMs then fetches a remaining read, selecting the pivots to

initiate the uni-directional RMEM computation for the read using

the proposed filter algorithm, or starting the exact match search.

Each computing CAM features a result buffer to store computa-

tional results for subsequent operations. CASA then forwards the

results to 5 SeedEx machines [17] for seed extension, with SeedEx

being a state-of-the-art seed extension accelerator. Each SeedEx

machine contains 12 BSW cores and 4 edit machines, equipping

us to catch up with the seeding throughput and maintain align-

ments identical to BWA-MEM2. With the alignment accelerator,

CASA first processes exact match reads and then proceeds to SMEM

computation for the remaining reads. During both stages, the read

batches are imported into CASA via two DDR4 channels, delivering

an average bandwidth of 25GB/s bandwidth.
Rather than naively using an 18-bit word CAM array to store

9-mers, which would inflate peripheral area, CASA stores four 9-

mers, each striding by 1M addresses, in one CAM entry (Figure 11).

This strategy requires a 72-bit word CAM array, but it reduces the

area of the tag array by 2.62× due to the shared sense amplifiers

among the four 9-mers, at the expense of search energy. As the

total number of 9-mers is 256 K, much smaller than the 1M address

gap in CAM entries, such data layout optimization will not bring

additional cycles in the tag array lookup.

6 EVALUATION METHOD
We evaluated CASA using the latest version of human genome as-

sembly (GRCh38) and mouse genome assembly (GRCm39) from the

UCSC genome browser [64]. We replaced all the N bases in the ref-

erence genome and reads with one of the standard nucleotides. For

GRCh38, we used the input reads from the ERR194147 dataset [14].
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Table 2: Baseline System Configuration

CPU

Intel(R) Core(TM) i7-6800K CPU

@3.40GHz with 6 cores

Intel(R) Xeon(R) E5-2699 v3 processor

@2.3GHz with 18 cores 2 sockets

L1D cache 192KB Data 32KB

L2 cache 1.5MB 256KB

L3 cache 15MB 45MB/socket

Memory 96GB DRAM 64GB/socket

Table 3: Circuit models in 28nm

Components delay(ps) area(𝜇𝑚2) energy(pJ) leakage(𝜇𝐴) Size
6T SRAM 424 2535 2.33 6.29 256 × 24

6T SRAM 444 5563 4.89 14.18 256 × 60

6T SRAM 548 22046 20.92 38.198 256 × 256

10T BCAM 495 18056 17.60 18.69 256 × 72

This dataset consists of 787,265,109 reads, and each read is of size

101 bp. For GRCm39, we used DWGSIM [13] to generate 10 million

simulated reads as input, where each read is of size 101 bp. We have

compared our SMEMs among all the reference parts with BWA-

MEM2 and GenAx and find out CASA produces identical SMEMs

to GenAx and 100% SMEMs of BWA-MEM2 are contained without

considering N-bases on GRCm39 and GRCh38 leading to the same

alignment as BWA-MEM2.

We compared the performance of CASA with ASIC ERT, BWA-

MEM2, and GenAx. The software-based BWA-MEM2 is performed

on a CPU with 12 and 32 threads. Table 2 lists the CPU configu-

ration. We estimated the performance of ASIC-ERT (16 seeding

machines with 4MB k-mer reuse cache) by modifying the software

ERT to get the memory trace. We re-implemented the seeding in

GenAx (68MB SRAM and 128 seeding lanes) and estimated its per-

formance by counting the seed & position table accesses and CAM

lookups and assuming that GenAx can reach the 128 seeding lanes

parallelism and a 60 TB/s on-chip peak bandwidth. To evaluate

CASA’s seeding performance, we developed a cycle-level C++ sim-

ulator, where the cycle count of the simulator is verified on a small

reference partition (100 Kbp) and a mini read batch (1 K reads of

101 bp) using the RTL implementation of CASA. We evaluated the

DRAM power and performance using DRAMpower with Micron

DDR4 specifications [47, 48] and Ramulator [31]. The data of DRAM

controller PHY [11, 33, 56] is derived from [33] by scaling the DQs

and C/As.

We synthesized the pre-seeding and computing controller using

Synopsys Design Compiler 2018 at the TSMC 28 nm technology

node to obtain the area, delay, and power in RVT. The frequency

of controllers reaches 2GHz and is limited by scheduling k-mer

accesses in the pre-seeding phase and checking the next pivot in

the read in the SMEM computing phase. Table 3 lists the memory

parameters of SRAM and CAM arrays in TSMC 28 nm CMOS, in-

cluding access time, area, dynamic energy, and leakage. We used

TSMC memory compiler to evaluate the SRAM performance. As

CAM is not available in the compiler, we customized CAM arrays

using a silicon-verified CAM design [68] that is in the same tech-

nology node and of similar memory capacity. Our implementation

achieves comparable energy and speed performance as the results

reported in [68] with SPICE simulation. We applied the same mem-

ory parameters to GenAx and ERT for fair comparisons.
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Figure 12: Seeding throughput for reference genome (a)
GRCh38 and (b) GRCm39.

7 RESULTS
7.1 SMEM Seeding Performance
We have evaluated the throughput of seeding for BWA-MEM2,

GenAx, ASIC-ERT, and CASA in the read alignment for reference

genomes GRCm39 and GRCh38. Figure 12 shows the comparison of

the seeding throughput between these tools, where the throughput

is measured as million reads per second. We observe that CASA

outperforms BWA-MEM2 with 12 threads (B-12T), with 32 threads

(B-32T), GenAx, and ERT by 17.26×, 7.53×, 5.47×, and 1.2× on

average for GRCm39 and GRCh38.

Notice CASA outperforms GenAx by more than 5 times even

though it uses only 10 computing CAMs while GenAx uses 128 seed

lanes. This is because (1) CASA features a pre-seeding filter table

supporting larger k-mer, (2) CASA’s filter-enabled SMEM comput-

ing algorithm provides a high filter rate leading to ∼ 30× speedup

per read, and (3) the pre-processing of exact match reads prevents

∼ 80% of reads from the expensive SMEM searching computation,

which provides 2.77× speedup. The seeding throughput of CASA is

slightly higher than ERT. However, ERT uses on average 68GB/s
DRAM bandwidth and a 64GB dedicated DRAM for indexing. In

contrast, CASA only requires only 25GB/s DRAM bandwidth for

fetching reads, which allows it to be more energy-efficient com-

pared to ERT.

7.2 Energy Efficiency and Area Breakdown
We have evaluated the power by measuring the number of per

cycle activated SRAM and CAM arrays, and the number of DRAM

accesses in our simulator. Table 4 lists the result. Figure 13 shows

the comparison of the power consumption and the energy efficiency

between GenAx, ASIC-ERT, and CASA. The on-chip power contains

the power of computing units, controllers and memory. We observe

that CASA reduces the power consumption compared to GenAx and

ASIC-ERT by 22 % and 91 % respectively. ERT consumes the highest

power since it requires large DRAM capacity for its index table,

and all of its DRAM channels are working at a high bandwidth due

to the random access of tree roots; While CASA and GenAx only

require a bandwidth that is less than 30GB/s mainly for loading

reads. CASA uses an efficient strategy to group CAM entries and

only enables groups of CAM entries that contain the k-mer to be

matched, togetherwith awithin groups technique to only enable the

entries related to the automata transitions while performing multi-

stride search, which allows it to consume only 4.2% of the power

compared to the naive implementation that enables all CAM entries.

Moreover, CASA has 6.69× and 2.57× higher energy efficiency than

GenAx and ERT since it provides the highest throughput with the

lowest power consumption.
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Table 4: Power and Area breakdown

Components delay(ps) area(𝑚𝑚2) power(W)
Pre-seeding controller 490 13.764 4.102

Computing controllers (total) 480 4.049 0.354

Pre-seeding filter table (45MB) N/A 188.411 7.166

Computing CAMs (10MB) N/A 90.329 6.949

DDR4 (total) N/A N/A 3.604

DRAM controller PHY N/A N/A 1.798
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Figure 13: Comparison of (a) power consumption (W) and (b)
energy efficiency (reads/mJ) between CASA, ERT, and GenAx.
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Table 4 shows the area breakdown of CASA. The main fraction

of the area is devoted to the on-chip memory including CAMs and

SRAMs, especially CAMs. Our 10T BCAM is large in area because

10T BCAMhas nearly double the size of cells compared to 6T SRAM,

and it contains extra peripherals for matching. In total, CASA takes

a 296.553mm
2
area at 28 nm, adding 33.9% compared to GenAx’s

220.544mm
2
.

7.3 End-to-end comparison
We have evaluated the performance of CASA in terms of the end-to-

end pipeline of genome analysis, which includes I/O (input reading,

encoding and decoding of SAM files, etc.), seeding, the prepro-

cessing of seed extension (suffix array lookup, chaining, etc.), seed

extension, and the postprocessing of seed extension. We sent the

seeds generated by CASA, GenAx, and ERT to 5 SeedEx lanes to

catch up with the speed of the seed generation. Figure 14 shows the

comparison of throughput among CASA+SeedEx, GenAx+SeedEx,
ERT+SeedEx, and 12-thread BWA-MEM2, where CASA+SeedEx is

2.4×, 1.4×, and 6× faster than ERT+SeedEx, GenAx+SeedEx, and
BWA-MEM2 respectively. The speed-up of CASA over GenAx

mainly comes from the enhancement of seeding throughput as

shown in Figure 12. Both CASA+SeedEx and GenAx+SeedEx can per-

form the computation of seeding and seed extension in parallel

due to the on-chip reference, which allows them to directly fetch

the hit of seeds on the reference. Moreover, for CASA+SeedEx and
GenAx+SeedEx, the running time of preprocessing of seed exten-

sion is negligible since SMEMs generated by CASA and GenAx can

be directly used in SeedEx for seed extension. In contrast, ERT does

not have an on-chip reference and needs the CPU to perform the
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posed heuristic analysis).

extra process on seeds and reference, such as chaining and pack-

aging reads, reference, and metadata. Therefore, though Figure 12

does not show massive throughput speedup of seeding provided by

CASA against ERT, CASA+SeedEx, in the end-to-end comparison,

outperforms ERT+SeedEx by 2.4 times since it has a low overhead

of preparing seeds for seed extension and allows to parallelize the

execution of seeding and seed extension.

7.4 Impacts of Pre-Seeding Filtering and Inexact
Matching Comparison

The naive implementation of the uni-directional SMEM search

requires the computation of SMEMs for each pivot on the read,

which is inefficient. Therefore, we have implemented a pre-seeding

filter that performs analysis on each pivot and discards the pivot

if the analysis determines the pivot cannot be the start index of a

SMEM. The implementation of our pre-seeding filter consists of a

pre-seeding filter table. We utilized this table to check the existence

of the k-mer that starts at a pivot on the reference genome. If such

a k-mer does not exist, we can directly discard the pivot. Moreover,

as described in Section 4.2(c), we have provided a novel analysis

to further algorithmically determine whether a pivot will lead to

a MEM that is fully contained in a SMEM. With this analysis (i.e.,

optimization), we can further reduce the number of pivots that will

trigger the SMEM searching computation.

Figure 15 shows the average number of pivots per read that trig-

gers the SMEM computation for a partition of the reference genome

(lower is better for seeding). We observe that our algorithms can

greatly reduce the number of pivots that lead to SMEM computa-

tion, where, compared to naive, our table algorithm filters out

98.9 % of the pivots, and table+analysis filters out 99.9 %.
Figure 16 shows the comparison of the throughput performance

of the inexact matching among CASA, ERT, and GenAx, where

the throughput of CASA is 3.86x of GenAx and 0.72x of ERT. The

speedup is not significant because the CAM introduces additional

padding operations for each pivot and reduces the number of com-

pute units to save energy.

8 RELATEDWORKS
Seeding in Read Alignment. The seeding step of read alignment

is a major bottleneck contributing around 40% to the overall execu-

tion time of BWA-MEMwhen aligning whole human genome reads.

This is because BWA-MEM uses a compressed index structure called

the FM-Index [37, 38], which causes random accesses to memory
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Figure 16: Comparison of the inexact matching throughput
among CASA, ERT, and GenAx, where the throughput is
normalized to GenAx.

and frequent cache misses on the CPU [6, 7]. Some prior works

have explored performing multi-stride string matching [7, 26] and

reordering memory accesses [69] to enhance the cache utilization

of the FM-index. BWA-MEME [27] uses learned indexes to acceler-

ate the computation of SMEMs, but leads to 120GB memory usage.

Other works take an orthogonal way by using a hash table for

seeding, which is usually coupled with filtration to accelerate read

alignment [1, 2, 29]. However, their optimizations are less effec-

tive in FM-index aligners. GPUs provide high available memory

bandwidth and data parallelism, which have also been leveraged to

accelerate FM-index search [6, 42]. However, GPU-based solutions

still face bandwidth underutilization as shown in [61]. Sieve[67]

andMEDAL[23] explore the in/near DRAMway to perform seeding

without heavy peripheral and provide impressive performance gain

against CPU. However, they cannot support multi-stride search.

Also, the access time of DRAM is typically more than 100 times

higher than CAM.

Acceleration on SMEM Seeding.A recent accelerator is proposed

for SMEM seeding using the Enumerated-Radix-Trees-index (i.e.,

ERT-index) [61]. The ERT-index provides better space locality and

higher throughput compared with FM-index. As reported in [61],

the FPGA implementation of the ERT accelerator improves band-

width efficiency of BWA-MEM by 4.5× and seeding throughput

by 3.3×. Several other accelerators for SMEM seeding, such as

GenAx [16] and GenCache [51], utilize a data structure with both

seed and position tables. These accelerators improve the perfor-

mance of seeding by leveraging on-chip memory bandwidth and

data parallelism. GenPiP [46] and SaVI [34] utilize ReCAM to accel-

erate genome analysis and provide significant speedup compared

to CPU. The limitation of their design is the compatibility with

CMOS technology since they require large on-chip ReRAM. CASA

performs the SMEM searches using CAM. CASA is evaluated in the

28 nm CMOS process, and it substantially improves the throughput

and power efficiency of seeding compared to GenAx and ERT.

9 CONCLUSION
In conclusion, we propose CASA, a CAM-based SMEM seeding

accelerator designed for efficient SMEM seeding. Existing state-

of-the-art SMEM seeding accelerators either demand substantial

DRAM bandwidth or suffer from excessive k-mer position fetches

and intersections. CASA addresses these challenges by co-designing

a hardware architecture and algorithms for SMEM pre-seeding fil-

tering. As the result of the experimental evaluation, our ASIC design

achieves a 1.2× and 5.47× throughput speedup compared to the

state-of-the-art designs ERT and GenAx, while delivering 6.69×

and 2.57× higher energy efficiency than GenAx and ERT in a 28 nm

CMOS process. Moreover, the filter-enabled architecture of CASA,

which supports large k-mer searches, broadens its applicability to

long-read alignment, de novo assembly, and metagenomics classi-

fication. This feature effectively reduces the number of candidate

positions, thereby enhancing efficiency.
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