
StreamQL: A Query Language for Efficient Data Stream Processing
Lingkun Kong, Konstantinos Mamouras

Rice University

Motivation

◼ Big-data era: IoT applications such as predictive
maintenance collect, process and analyze a massive
amount of data in real-time.

- The setting of data stream processing
➢ unbounded source of data
➢ real-time, very high rate
➢ complex patterns
◼ Low-level stream processing using general-purpose

programming language is cumbersome, error-prone,
and not modular.

State of the Art

◼ Limitations:
- Lack of stream abstractions and formal semantics.
- No guarantee of correctness.
- Inefficient in detecting complex patterns.

Our Approach

◼ StreamQL (Streaming Query Language) simplifies the
task of specifying complex streaming computations.

➢ Stream processing is a procedure that transforms
the input stream to the output stream.

◼ Contributions:
- economical (only half size of RxJava)
- proved to be expressive and correct.
- better throughput performance in practice in

comparison to other state-of-the-art approaches.
- signal processing and machine learning toolbox.

Case Studies

◼ Predictive maintenance:
- Rolling Bearing Fault Prediction
- Battery Aging
◼ Healthcare Monitoring:
- Cardiac Signal analysis
- Arterial Blood Pressure monitoring
- Walking motion detection
◼ High-frequency Market Analysis:
- Trading direction analysis

Experiments

◼ The Java implementation of StreamQL is evaluated
with RxJava and Siddhi in one micro benchmark and
four benchmarks with realistic workloads.

➢ Micro Benchmark: For basic stream computations,
StreamQL is 1.1-100 times faster than RxJava and
2–100 times faster than Siddhi.

➢ Realistic Workloads: For computations involving
complex streaming aggregation and pattern
detection, StreamQL is on average 5 times faster
than RxJava and 40 times faster than Siddhi.

Relational Dataflow Temporal

map, filter, emit,
aggr, groupBy,

window

compose,
parallel

take, skip,
search, seq,

iterate

◼ Example of Predictive Maintenance:
- pipeline-styled streaming computation
- windowing and key-based partitioning
- signal processing support
- machine learning support

getMagn = map(x -> sqrt(x.ax*x.ax+x.ay*x.ay+x.az*x.az)/3.0);
smoothing = FIR([… fir parameters …]);
bandpass = IIR([… bandpass filtering parameters …]);
envelope = HT(… Hilbert transform parameters …) >> abs();
spectrum = window(n, s, FFT(… FFT parameters …));
getFeatures = getMagn >> smoothing >> bandpass >>

envelope >> spectrum;
training = SVM(… training parameters …); detecting = … ;
singleProc = getFeatures >> seq(training, detecting);
process = groupBy(x -> x.id, singleProc, (key,res) -> …);

