StreamQL: A Query Language for Efficient Data Stream Processing
Lingkun Kong, Konstantinos Mamouras

B Big-data era: 10T applications such as predictive
maintenance collect, process and analyze a massive
amount of data in real-time.

[Sensor DataJ :}[Preprocess] (3 [Pr;(iigglon] [
f

- The setting of data stream processing

» unbounded source of data

» real-time, very high rate

» complex patterns

B Low-level stream processing using general-purpose
programming language is cumbersome, error-prone,

and not modular.
B Insights &
Decision

Decision
T

data stream State s = initialize()
foreach (Item x: Stream){

0O (o 5= mdates
— emit output(s)
data item (event) ¥

State of the Art

1
Insights & ’

-~

Streaming Database: Comp Event Pr g
STREAM, Aurora, Borealis, CACQ, SQL-TS, SASE, Cayuga, SPL MatchRegex, Zstream,

TelegraphCQ, Niagara, Gigascope, Trill, Esper, Siddhi, Flink, Oracle Stream Analytics,

™

4

L Nile, StreamInsight IBM Streams

(" Distributed Stream Synchronous Dataflow: Light-weight

Processing: SIGNAL, Esterel, LUSTRE, Streaming

54, IBM Streams, Streamlt Engine:
MapReduce Online, Storm, Microsoft’s Trill,
Heron, Samza, Naiad, Real-time Si 1P P Esper, Siddhi,
: % ignal Processing: >
Spark Streaming, Flink, [Xst WaveS: TrillDSP ReactiveX
Google’s MillWheel, Apex B RpRIs s ML StreamQRE

B Limitations:

- Lack of stream abstractions and formal semantics.
- No guarantee of correctness.

- Inefficient in detecting complex patterns.

Rice University

Our Approach

B StreamQL (Streaming Query Language) simplifies the
task of specifying complex streaming computations.
» Stream processing is a procedure that transforms
the input stream to the output stream.
input stream output stream
Stream
D D D » [Transformation] » D D D
B Contributions:
- economical (only half size of RxJava)
- proved to be expressive and correct.
- better throughput performance in practice in

comparison to other state-of-the-art approaches.
- signal processing and machine learning toolbox.

Relational Dataflow Temporal
map, filter, emit, compose, take, skip,
aggr, groupBy, parallel search, seq,

window iterate

B Predictive maintenance:

- Rolling Bearing Fault Prediction

- Battery Aging

B Healthcare Monitoring:

- Cardiac Signal analysis

- Arterial Blood Pressure monitoring
- Walking motion detection

B High-frequency Market Analysis:

- Trading direction analysis

o smoothing &
signal ¢[key-based]I:b[bandpass JI::)[frequency

B Example of Predictive Maintenance:
pipeline-styled streaming computation
- windowing and key-based partitioning
- signal processing support

- machine learning support

partitioning fiitering analysis

getMagn = map(x -> sgrt(x.ax*x.ax+x.ay*x.ay+x.az*x.az)/3.0);

smoothing = FIR([... fir parameters ...]);

bandpass = lIR([... bandpass filtering parameters ...]);

envelope = HT(... Hilbert transform parameters ...) >> abs();

spectrum = window(n, s, FFT(... FFT parameters ...));

getFeatures = getMagn >> smoothing >> bandpass >>
envelope >> spectrum;

training = SVM(... training parameters ...); detecting =...;

singleProc = getFeatures >> seq(training, detecting);

process = groupBy(x -> x.id, singleProc, (key,res) -> ...);

B The Java implementation of StreamQL is evaluated
with RxJava and Siddhi in one micro benchmark and
four benchmarks with realistic workloads.

» Micro Benchmark: For basic stream computations,
StreamQL is 1.1-100 times faster than RxJava and
2-100 times faster than Siddhi.

» Realistic Workloads: For computations involving
complex streaming aggregation and pattern
detection, StreamQL is on average 5 times faster
than RxJava and 40 times faster than Siddhi.

